If A is csr_matrix
, you can use .toarray()
(there's also .todense()
that produces a numpy
matrix
, which is also works for the DataFrame
constructor):
df = pd.DataFrame(A.toarray())
You can then use this with pd.concat()
.
A = csr_matrix([[1, 0, 2], [0, 3, 0]])
(0, 0) 1
(0, 2) 2
(1, 1) 3
<class 'scipy.sparse.csr.csr_matrix'>
pd.DataFrame(A.todense())
0 1 2
0 1 0 2
1 0 3 0
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 3 columns):
0 2 non-null int64
1 2 non-null int64
2 2 non-null int64
In version 0.20, pandas
introduced sparse data structures, including the SparseDataFrame
.
In pandas 1.0, SparseDataFrame
was removed:
In older versions of pandas, the SparseSeries
and SparseDataFrame
classes were the preferred way to work with sparse data. With the advent of extension arrays, these subclasses are no longer needed. Their purpose is better served by using a regular Series or DataFrame with sparse values instead.
The migration guide shows how to use these new data structures.
For instance, to create a DataFrame
from a sparse matrix:
from scipy.sparse import csr_matrix
A = csr_matrix([[1, 0, 2], [0, 3, 0]])
df = pd.DataFrame.sparse.from_spmatrix(A, columns=['A', 'B', 'C'])
df
A B C
0 1 0 2
1 0 3 0
df.dtypes
A Sparse[float64, 0]
B Sparse[float64, 0]
C Sparse[float64, 0]
dtype: object
Alternatively, you can pass sparse matrices to sklearn
to avoid running out of memory when converting back to pandas
. Just convert your other data to sparse format by passing a numpy
array
to the scipy.sparse.csr_matrix
constructor and use scipy.sparse.hstack
to combine (see docs).