Hy everybody! I am a beginer in python and data analysis, and meet with a problem, during fitting a power function to my data. Here I plotted my dataset as a scatterplot
I want to plot a power function with expontent arround -1 , but after I apply the levenberg-marquardt method, using lmfit library in python, I get the following faulty image. I tried to modify the initial parameters, but it didn't help.
Here is my code:
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from lmfit import minimize, Parameters, Parameter, report_fit
be = pd.read_table('...',
skipinitialspace=True,
names = ["CoM", "slope", "slope2"])
x=be["CoM"]
data=be["slope"]
def fcn2min(params, x, data):
n2 = params['n2'].value
n1 = params['n1'].value
model = n1 * x ** n2
return model - data #that's what you want to minimize
# create a set of Parameters
# 'value' is the initial condition
params = Parameters()
params.add('n2', value= -1.00)
params.add('n1',value= 23.0)
# do fit, here with leastsq model
result = minimize(fcn2min, params, args=(be["CoM"],be["slope"]))
#calculate final result
final = data + result.residual
resid = result.residual
# write error report
report_fit(result)
#plot results
xplot = x
yplot = result.params['n1'].value * x ** result.params['n2'].value
plt.figure(figsize=(15,6))
plt.ylabel('OD-slope',fontsize=18, color='blue')
plt.xlabel('CoM height_Sz [m]',fontsize=18, color='blue')
plt.plot(be["CoM"],be["slope"],"o", label="slope_flat")
plt.plot(be["CoM"],be["slope2"],"+",color='r', label="slope_curv")
plt.plot(xplot,yplot)
plt.legend()
plt.savefig('plot2')
plt.show()
I don't quite understand what is the problem with this, so if you have any observations, thank you very much.