I have a set of documents stored in a JOSN file. Along this line, I retrieve them using the following code so that they are stored under the term data
:
import json
with open('SDM_2015.json') as f:
data = [json.loads(line) for line in f]
Integrating all texts into a single one to form the corpus is done by:
corpus = []
for i in range(len(data) -1):
corpus.append(data[i]['body'] + data[i+1]['body'])
Until now pretty straightforward manipulations. To build the tfidf I use the following lines of codes which remove stop words and punctuation, stems each term and tokenize the data.
import nltk
import nltk, string
from sklearn.feature_extraction.text import TfidfVectorizer
# stemming each word (common root)
stemmer = nltk.stem.porter.PorterStemmer()
# removing puctuations etc
remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)
## First function that creates the tokens
def stem_tokens(tokens):
return [stemmer.stem(item) for item in tokens]
## Function that incorporating the first function, converts all words into lower letters and removes puctuations maps (previously specified)
def normalize(text):
return stem_tokens(nltk.word_tokenize(text.lower().translate(remove_punctuation_map)))
## Lastly, a functionthat contains all the previous ones plus stopwords removal
vectorizer = TfidfVectorizer(tokenizer=normalize, stop_words='english')
I then try to apply this function to the corpus
such:
tfidf = vectorizer.fit_transform(corpus)
print(((tfidf*tfidf.T).A)[0,1])
But nothing happens, any idea of how to proceed?
Kind regards