I am trying to build a small program that calculates the tfidf in python. There are two very nice tutorials which I have used (I have code from here and another function from kaggle )
import nltk
import string
import os
from bs4 import *
import re
from nltk.corpus import stopwords # Import the stop word list
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.stem.porter import PorterStemmer
path = 'my/path'
token_dict = {}
stemmer = PorterStemmer()
def stem_tokens(tokens, stemmer):
stemmed = []
for item in tokens:
stemmed.append(stemmer.stem(item))
return stemmed
def tokenize(text):
tokens = nltk.word_tokenize(text)
stems = stem_tokens(tokens, stemmer)
return stems
def review_to_words( raw_review ):
# 1. Remove HTML
review_text = BeautifulSoup(raw_review).get_text()
# 2. Remove non-letters
letters_only = re.sub("[^a-zA-Z]", " ", review_text)
# 3. Convert to lower case, split into individual words
words = letters_only.lower().split()
# 4. In Python, searching a set is much faster than searching
# a list, so convert the stop words to a set
stops = set(stopwords.words("english"))
# 5. Remove stop words
meaningful_words = [w for w in words if not w in stops]
# 6. Join the words back into one string separated by space,
# and return the result.
return( " ".join( meaningful_words ))
for subdir, dirs, files in os.walk(path):
for file in files:
file_path = subdir + os.path.sep + file
shakes = open(file_path, 'r')
text = shakes.read()
token_dict[file] = review_to_words(text)
tfidf = TfidfVectorizer(tokenizer=tokenize, stop_words='english')
tfs = tfidf.fit_transform(token_dict.values())
str = 'this sentence has unseen text such as computer but also king lord lord this this and that lord juliet'#teststring
response = tfidf.transform([str])
feature_names = tfidf.get_feature_names()
for col in response.nonzero()[1]:
print feature_names[col], ' - ', response[0, col]
The code seems to work fine but then I have a look at the results.
thi - 0.612372435696
text - 0.204124145232
sentenc - 0.204124145232
lord - 0.612372435696
king - 0.204124145232
juliet - 0.204124145232
ha - 0.204124145232
comput - 0.204124145232
The IDFs seem to be the same for all the words because the TFIDFs are just n*0.204. I have checked with tfidf.idf_
and this seems to be the case.
Is there something in the method that I have not implemented correctly? Do you know why the idf_s are the same?