In case you want to make predictions on the test data, after every epoch while the training is going-on you can try this
class CustomCallback(keras.callbacks.Callback):
def __init__(self, model, x_test, y_test):
self.model = model
self.x_test = x_test
self.y_test = y_test
def on_epoch_end(self, epoch, logs={}):
y_pred = self.model.predict(self.x_test, self.y_test)
print('y predicted: ', y_pred)
You need mention the callback during model.fit
model.sequence()
# your model architecture
model.fit(x_train, y_train, epochs=10,
callbacks=[CustomCallback(model, x_test, y_test)])
Similar to on_epoch_end
there are many other methods provided by keras
on_train_begin, on_train_end, on_epoch_begin, on_epoch_end, on_test_begin,
on_test_end, on_predict_begin, on_predict_end, on_train_batch_begin, on_train_batch_end,
on_test_batch_begin, on_test_batch_end, on_predict_batch_begin,on_predict_batch_end