I am trying to synchronize one main thread with N children threads. After some reading, I used condition_variable
and unique_lock
. However, I always get the errors condition_variable::wait: mutex not locked: Operation not permitted
or unique_lock::unlock: not locked: Operation not permitted
, in OS X. In Linux, I get Operation not permitted
only.
To be clearer: my goal is to get a sequence of prints:
main thread, passing to 0
thread 0, passing back to main
main thread, passing to 0
thread 0, passing back to main
...
for each of the four threads.
I adapted the code from the example in http://en.cppreference.com/w/cpp/thread/condition_variable. This example uses unlock
after wait
, and it works wonderfully with only one thread other than main (N=1). But when adapted to work with N>1 threads, the error above happens.
Yam Marcovic said in the comments that I should not use unlock
. But then, why does the cppreference example use it? And why does it work well with one main and one other threads?
Here is the code:
#include <cstdio>
#include <thread>
#include <mutex>
#include <condition_variable>
using namespace std;
constexpr int N_THREADS = 4;
constexpr int N_ITER = 10;
bool in_main[N_THREADS] = {false};
void fun(mutex *const mtx, condition_variable *const cv, int tid){
for(int i=0; i<N_ITER; i++) {
unique_lock<mutex> lk(*mtx);
// Wait until in_main[tid] is false
cv->wait(lk, [=]{return !in_main[tid];});
// After the wait we own the lock on mtx, which is in lk
printf("thread %d, passing back to main\n", tid);
in_main[tid] = true;
lk.unlock(); // error here, but example uses unlock
cv->notify_one();
}
}
int main(int argc, char *argv[]) {
// We are going to create N_THREADS threads. Create mutexes and
// condition_variables for all of them.
mutex mtx[N_THREADS];
condition_variable cv[N_THREADS];
thread t[N_THREADS];
// Create N_THREADS unique_locks for using the condition_variable with each
// thread
unique_lock<mutex> lk[N_THREADS];
for(int i=0; i<N_THREADS; i++) {
lk[i] = unique_lock<mutex>(mtx[i]);
// Create the new thread, giving it its thread id, the mutex and the
// condition_variable,
t[i] = thread(fun, &mtx[i], &cv[i], i);
}
for(int i=0; i < N_ITER*N_THREADS; i++) {
int tid=i % N_THREADS; // Thread id
// Wait until in_main[tid] is true
cv[tid].wait(lk[tid], [=]{return in_main[tid];});
// After the wait we own the lock on mtx[tid], which is in lk[tid]
printf("main thread, passing to %d\n", tid);
in_main[tid] = false;
lk[tid].unlock(); // error here, but example uses unlock
cv[tid].notify_one();
}
for(int i=0; i<N_THREADS; i++)
t[i].join();
return 0;
}
Sample output:
thread 0, passing back to main
main thread, passing to 0
thread 1, passing back to main
thread 0, passing back to main
main thread, passing to 1
thread 2, passing back to main
thread 1, passing back to main
main thread, passing to 2
thread 2, passing back to main
thread 3, passing back to main
main thread, passing to 3
main thread, passing to 0
thread 3, passing back to main
libc++abi.dylib: terminating with uncaught exception of type std::__1::system_error: unique_lock::unlock: not locked: Operation not permitted
Abort trap: 6