For example consider the following verilog input (test.v
):
module test(input [7:0] val1, val2, output [7:0] temp);
assign temp = 16*val1 + 8*val2;
endmodule
The command yosys -p 'prep; opt -full; show' test.v
will produce the following circuit diagram:

And the output written to the console contains this:
3.1. Executing OPT_EXPR pass (perform const folding).
Replacing multiply-by-16 cell `$mul$test.v:2$1' in module `\test' with shift-by-4.
Replacing multiply-by-8 cell `$mul$test.v:2$2' in module `\test' with shift-by-3.
Replacing $shl cell `$mul$test.v:2$1' (B=3'100, SHR=-4) in module `test' with fixed wiring: { \val1 [3:0] 4'0000 }
Replacing $shl cell `$mul$test.v:2$2' (B=2'11, SHR=-3) in module `test' with fixed wiring: { \val2 [4:0] 3'000 }
The two lines reading Replacing multiply-by-* cell
are the transformation you mentioned. The two lines after that replace the constant shift operations with wiring, using {val1[3:0], 4'b0000}
and {val2[4:0], 3'b000}
as inputs for the adder.
This is done in the opt_expr
pass. See passes/opt/opt_expr.cc
for its source code to see how it's done.