As the author of proposed Boost.AFIO which can make use of POSIX AIO, I strongly recommend against using POSIX AIO at all. I am hardly alone in this opinion, @arvid is similarly against: http://blog.libtorrent.org/2012/10/asynchronous-disk-io/. The API itself is poorly designed and as a result scales poorly with load unless you use OS-specific alternatives or extensions to AIO like BSD kqueues. POSIX AIO is essentially useless as-is.
Additionally, AIO calls are not signal safe on Linux, which you are probably using. This is because on Linux they are implemented in userspace using an emulation based on a threadpool. On BSD, AIO calls have a proper kernel syscall interface, but in the kernel turn into - yes you guessed it - a threadpool based emulation unless O_DIRECT is turned on.
You are therefore much better off on POSIX of simply always using a threadpool unless all your i/o is with O_DIRECT on. If O_DIRECT is indeed always on, Linux provides a custom kernel API detailed at http://man7.org/linux/man-pages/man2/io_submit.2.html which is fairly effective, and on BSD if you replace signal driven handling with BSD kqueues (https://www.freebsd.org/cgi/man.cgi?kqueue, see EVFILT_AIO) then with O_DIRECT things can also scale well, better than a threadpool anyway.
Use of signal based completion handling on ANY POSIX platform has dreadful performance. AFIO v2 provides a generic POSIX AIO backend, and it is dreadful, dreadful, dreadful. Avoid like the plague.
Note that a threadpooled synchronous API design is portable, scales well for most use cases, and is what I (and indeed arvid) would recommend to anybody without highly specialised needs like writing a database backend where you need very tight control over the physical storage layer, and anything but O_DIRECT|O_SYNC isn't an option.
Ok, all that said, if you really really want to use signal driven aio, I assume this is because you want to multiplex your file i/o with non-file i/o stuff and you therefore can't use aio_suspend() which is the proper API for doing this. The way AFIO v2 handles this is to use a realtime signal to interrupt aio_suspend() when something not aio related needs to be processed, it can then be handled and aio_suspend() restarted. You need to be very careful in handling races and deadlocks, and you'll need to carefully mask and unmask the signal for the thread calling aio_suspend() lest the realtime signal gets lost and you get a lost wakeup. All in all, it's not worth it for the typically much lower i/o performance you get over a threadpool + synchronous APIs.