I install Skflow and ran digits.py example on Pycharm and saw that it returns an error "AttributeError: 'module' object has no attribute 'TensorFlowDNNRegressor". I proceed and ran the same program on Ipython and everything's fine. What should be the problem?
from sklearn import datasets, cross_validation, metrics
import tensorflow as tf
import skflow
from skflow import monitors
# Load dataset
digits = datasets.load_digits()
X = digits.images
y = digits.target
# Split it into train / test subsets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y,
test_size=0.2,
random_state=42)
# Split X_train again to create validation data
X_train, X_val, y_train, y_val = cross_validation.train_test_split(X_train,
y_train,
test_size=0.2,
random_state=42)
# TensorFlow model using Scikit Flow ops
def conv_model(X, y):
X = tf.expand_dims(X, 3)
features = tf.reduce_max(skflow.ops.conv2d(X, 12, [3, 3]), [1, 2])
features = tf.reshape(features, [-1, 12])
return skflow.models.logistic_regression(features, y)
val_monitor = monitors.ValidationMonitor(X_val, y_val, n_classes=10, print_steps=50)
# Create a classifier, train and predict.
classifier = skflow.TensorFlowEstimator(model_fn=conv_model, n_classes=10,
steps=1000, learning_rate=0.05,
batch_size=128)
classifier.fit(X_train, y_train, val_monitor)
score = metrics.accuracy_score(y_test, classifier.predict(X_test))
print('Test Accuracy: {0:f}'.format(score))
Furthermore, I learned that I have problem with any functions of Skflow on Pycharm when it works on Ipython very well. Any speculation on this?