I implemented the default gmm model provided in mllib for my algorithm. I am repeatedly finding that the resultant weights are always equally waited no matter how many clusters i initiate. Is there any specific reason why the weights are not being adjusted ? Am I implementing it wrong ?
import org.apache.spark.mllib.clustering.GaussianMixture
import org.apache.spark.mllib.clustering.GaussianMixtureModel
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.DataFrameNaFunctions
var colnames= df.columns;
for(x<-colnames)
{
if (df.select(x).dtypes(0)._2.equals("StringType")|| df.select(x).dtypes(0)._2.equals("LongType"))
{df = df.drop(x)}
}
colnames= df.columns;
var assembler = new VectorAssembler().setInputCols(colnames).setOutputCol("features")
var output = assembler.transform(df)
var normalizer= new Normalizer().setInputCol("features").setOutputCol("normalizedfeatures").setP(2.0)
var normalizedOutput = normalizer.transform(output)
var temp = normalizedOutput.select("normalizedfeatures")
var outputs = temp.rdd.map(_.getAs[org.apache.spark.mllib.linalg.Vector]("normalizedfeatures"))
var gmm = new GaussianMixture().setK(2).setMaxIterations(10000).setSeed(25).run(outputs)
Output code :
for (i <- 0 until gmm.k) {
println("weight=%f\nmu=%s\nsigma=\n%s\n" format
(gmm.weights(i), gmm.gaussians(i).mu, gmm.gaussians(i).sigma))
}
And therefore the points are being predicted in the same cluster for all the points . var ol=gmm.predict(outputs).toDF