We recently caught a report because of GCC 5.1, libstdc++ and Dual ABI. It seems Clang is not aware of the GCC inline namespace changes, so it generates code based on one set of namespaces or symbols, while GCC used another set of namespaces or symbols. At link time, there are problems due to missing symbols.
If I am parsing the Dual ABI page correctly, it looks like a matter of pivoting on _GLIBCXX_USE_CXX11_ABI
and abi::cxx11
with some additional hardships. More reading is available on Red Hat's blog at GCC5 and the C++11 ABI and The Case of GCC-5.1 and the Two C++ ABIs.
Below is from a Ubuntu 15 machine. The machine provides GCC 5.2.1.
$ cat test.cxx
#include <string>
std::string foo __attribute__ ((visibility ("default")));
std::string bar __attribute__ ((visibility ("default")));
$ g++ -g3 -O2 -shared test.cxx -o test.so
$ nm test.so | grep _Z3
...
0000201c B _Z3barB5cxx11
00002034 B _Z3fooB5cxx11
$ echo _Z3fooB5cxx11 _Z3barB5cxx11 | c++filt
foo[abi:cxx11] bar[abi:cxx11]
How can I generate a binary with symbols using both decorations ("coexistence" as the Red Hat blog calls it)?
Or, what are the options available to us?
I'm trying to achieve an "it just works" for users. I don't care if there are two weak symbols with two different behaviors (std::string
lacks copy-on-write, while std::string[abi:cxx11]
provides copy-on-write). Or, one can be an alias for the other.
Debian has a boatload of similar bugs at Debian Bug report logs: Bugs tagged libstdc++-cxx11. Their solution was to rebuild everything under the new ABI, but it did not handle the corner case of mixing/matching compilers modulo the ABI changes.
In the Apple world, I think this is close to a fat binary. But I'm not sure what to do in the Linux/GCC world. Finally, we don't control how the distro's build the library, and we don't control what compilers are used to link an applications with the library.