Is there a better way to create a contingency table in pandas with pd.crosstab() or pd.pivot_table() to generate counts and percentages.
Current solution
cat=['A','B','B','A','B','B','A','A','B','B']
target = [True,False,False,False,True,True,False,True,True,True]
import pandas as pd
df=pd.DataFrame({'cat' :cat,'target':target})
using crosstab
totals=pd.crosstab(df['cat'],df['target'],margins=True).reset_index()
percentages = pd.crosstab(df['cat'],
df['target']).apply(lambda row: row/row.sum(),axis=1).reset_index()
and a merge
summaryTable=pd.merge(totals,percentages,on="cat")
summaryTable.columns=['cat','#False',
'#True','All','percentTrue','percentFalse']
output
+---+-----+--------+-------+-----+-------------+--------------+
| | cat | #False | #True | All | percentTrue | percentFalse |
+---+-----+--------+-------+-----+-------------+--------------+
| 0 | A | 2 | 2 | 4 | 0.500000 | 0.500000 |
| 1 | B | 2 | 4 | 6 | 0.333333 | 0.666667 |
+---+-----+--------+-------+-----+-------------+--------------+