I am facing a problem which I have failed to get over for ages now.
I am on Spark 1.4 and Scala 2.10. I cannot upgrade at this moment (big distributed infrastructure)
I have a file with few hundred columns, only 2 of which are string and rest all are Long. I want to convert this data into a Label/Features dataframe.
I have been able to get it into LibSVM format.
I just cannot get it into a Label/Features format.
The reason being
I am not being able to use the toDF() as shown here https://spark.apache.org/docs/1.5.1/ml-ensembles.html
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF()
it it not supported in 1.4
So I first converted the txtFile into a DataFrame where I used something like this
def getColumnDType(columnName:String):StructField = { if((columnName== "strcol1") || (columnName== "strcol2")) return StructField(columnName, StringType, false) else return StructField(columnName, LongType, false) } def getDataFrameFromTxtFile(sc: SparkContext,staticfeatures_filepath: String,schemaConf: String) : DataFrame = { val sfRDD = sc.textFile(staticfeatures_filepath)// val sqlContext = new org.apache.spark.sql.SQLContext(sc) // reads a space delimited string from application.properties file val schemaString = readConf(Array(schemaConf)).get(schemaConf).getOrElse("") // Generate the schema based on the string of schema val schema = StructType( schemaString.split(" ").map(fieldName => getSFColumnDType(fieldName))) val data = sfRDD .map(line => line.split(",")) .map(p => Row.fromSeq(p.toSeq)) var df = sqlContext.createDataFrame(data, schema) //schemaString.split(" ").drop(4) //.map(s => df = convertColumn(df, s, "int")) return df }
When I do a df.na.drop() df.printSchema()
with this returned dataframe I get perfect Schema Like this
root
|-- rand_entry: long (nullable = false)
|-- strcol1: string (nullable = false)
|-- label: long (nullable = false)
|-- strcol2: string (nullable = false)
|-- f1: long (nullable = false)
|-- f2: long (nullable = false)
|-- f3: long (nullable = false)
and so on till around f300
But - the sad part is whatever I try to do (see below) with the df, I am always getting a ClassCastException (java.lang.String cannot be cast to java.lang.Long)
val featureColumns = Array("f1","f2",....."f300")
assertEquals(-99,df.select("f1").head().getLong(0))
assertEquals(-99,df.first().get(4))
val transformeddf = new VectorAssembler()
.setInputCols(featureColumns)
.setOutputCol("features")
.transform(df)
So - the bad is - even though the schema says Long - the df is still internally considering everything as String.
Edit
Adding a simple example
Say I have a file like this
1,A,20,P,-99,1,0,0,8,1,1,1,1,131153
1,B,23,P,-99,0,1,0,7,1,1,0,1,65543
1,C,24,P,-99,0,1,0,9,1,1,1,1,262149
1,D,7,P,-99,0,0,0,8,1,1,1,1,458759
and
sf-schema=f0 strCol1 f1 strCol2 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
(column names really do not matter so you can disregard this details)
All I am trying to do is create a Label/Features kind of dataframe where my 3rd column becomes a label and the 5th to 11th columns become a feature [Vector] column. Such that I can follow the rest of the steps in https://spark.apache.org/docs/latest/ml-classification-regression.html#tree-ensembles.
I have cast the columns too like suggested by zero323
val types = Map("strCol1" -> "string", "strCol2" -> "string")
.withDefault(_ => "bigint")
df = df.select(df.columns.map(c => df.col(c).cast(types(c)).alias(c)): _*)
df = df.drop("f0")
df = df.drop("strCol1")
df = df.drop("strCol2")
But the assert and VectorAssembler still fails. featureColumns = Array("f2","f3",....."f11") This is whole sequence I want to do after I have my df
var transformeddf = new VectorAssembler()
.setInputCols(featureColumns)
.setOutputCol("features")
.transform(df)
transformeddf.show(2)
transformeddf = new StringIndexer()
.setInputCol("f1")
.setOutputCol("indexedF1")
.fit(transformeddf)
.transform(transformeddf)
transformeddf.show(2)
transformeddf = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(5)
.fit(transformeddf)
.transform(transformeddf)
The exception trace from ScalaIDE - just when it hits the VectorAssembler is as below
java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Long
at scala.runtime.BoxesRunTime.unboxToLong(BoxesRunTime.java:110)
at scala.math.Numeric$LongIsIntegral$.toDouble(Numeric.scala:117)
at org.apache.spark.sql.catalyst.expressions.Cast$$anonfun$castToDouble$5.apply(Cast.scala:364)
at org.apache.spark.sql.catalyst.expressions.Cast$$anonfun$castToDouble$5.apply(Cast.scala:364)
at org.apache.spark.sql.catalyst.expressions.Cast.eval(Cast.scala:436)
at org.apache.spark.sql.catalyst.expressions.Alias.eval(namedExpressions.scala:118)
at org.apache.spark.sql.catalyst.expressions.CreateStruct$$anonfun$eval$2.apply(complexTypes.scala:75)
at org.apache.spark.sql.catalyst.expressions.CreateStruct$$anonfun$eval$2.apply(complexTypes.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at org.apache.spark.sql.catalyst.expressions.CreateStruct.eval(complexTypes.scala:75)
at org.apache.spark.sql.catalyst.expressions.CreateStruct.eval(complexTypes.scala:56)
at org.apache.spark.sql.catalyst.expressions.ScalaUdf$$anonfun$2.apply(ScalaUdf.scala:72)
at org.apache.spark.sql.catalyst.expressions.ScalaUdf$$anonfun$2.apply(ScalaUdf.scala:70)
at org.apache.spark.sql.catalyst.expressions.ScalaUdf.eval(ScalaUdf.scala:960)
at org.apache.spark.sql.catalyst.expressions.Alias.eval(namedExpressions.scala:118)
at org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection.apply(Projection.scala:68)
at org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection.apply(Projection.scala:52)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:312)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$3.apply(SparkPlan.scala:143)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$3.apply(SparkPlan.scala:143)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1767)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1767)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)