I make a prediction on the basis of the available data. But they are wrong. And i don`t know why. I have code creating and training neural networks.
ds = SupervisedDataSet(3, 1)
ds.addSample( (76.7, 13.8, 103.0), (770,))
ds.addSample( (70.9, 13.0, 92.0), (650,))
ds.addSample( (65.6, 15.9, 104.3), (713,))
ds.addSample( (59.3, 14.8, 88.0), (593,))
ds.addSample( (50.0, 13.0, 65.2), (443,))
ds.addSample( (44.9, 17.6, 79.0), (547,))
ds.addSample( (44.3, 18.4, 78.6), (553,))
ds.addSample( (44.4, 18.4, 81.8), (576,))
net = buildNetwork(ds.indim, 5, ds.outdim, bias=True)
trainer = BackpropTrainer(net, dataset=ds, verbose=True,learningrate=0.05)
trainer.setData(ds)
trainer.trainEpochs(100)
But when i write
net.activate((76.7, 13.8, 103.0))
I got wrong result array([ 570.34849909]). And when I change the input values, the result does not change. For example, net.activate((76.7, 13.8, 90.0)) - array([ 570.34849909]).
I don`t understand how to fix it. I tried different ways of learning, different number of neurons in the hidden layer, and a different number of epoch.