I have an OpenCV application and I have to implement a correspondence search using varying support weights between two image pair. This work is very similar to "Adaptive Support-Weight Approach for Correspondence Search" by Kuk-Jin Yoon and In So Kweon. The support weights are in a given support window.
I calculate dissimilarity between pixels using the support weights in the two images. Dissimilarity between pixel 'p' and 'Pd' is given by
where Pd and Qd are the pixels in the target image when pixels p and q in the reference image have a disparity value d; Np and Npd are the support weight.
After this, the disparity of each pixel is selected by the WTA (Winner-Takes-All) method as:
What I would like to know is how to proceed starting with the formula of the fig.1 (function computing dissimilarity and weights that I have written), i.e. which pixel to consider? Where to start? What pixel with? Any suggestion?
The final result of the work should be similar to:
What could be a good way to do it?
UPDATE1
Should I start creating a new image, and then consider the cost between the pixel (0,0) and all the other pixels, find the minimum value and set this value as the value in the new image at pixel (0,0) ? And so on with the other pixels?