This is really multiple questions in one.
About this
...
From my understanding, the use of this
is supposed to be completely superfluous but compiler support for C++11 is not entirely universal. This should work, according to the C++11 standard:
struct Base {
void func() noexcept;
};
struct Derived() {
void func() noexcept(noexcept(Base::func())) {}
};
Note that base_func()
is a non-static member function, but because it appears in an "unevaluated operand" it is okay. From n3337 sec 4.1.1:
An id-expression that denotes a non-static data member or non-static member function of a class can only be used:
...
- if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
However, some compilers do not support this. You are then forced to use std::declval
:
#include <utility>
struct Base {
void func() noexcept;
};
struct Derived() {
void func() noexcept(noexcept(std::declval<Base>().func())) {}
};
About accessibility...
I read through the relevant parts of the standard about "unevaluated operands" and "member access control" and I have come to the conclusion that the standard is a bit ambiguous. It mentions that a protected
name can be used only by members, friends, and derived classes. The question is whether unevaluated operands "use" the member names which appear in them. They certainly don't odr-use the member names, and can even use member names if no definition is provided, and this kind of ambiguity is exactly why the term "odr-use" even exists! For example,
int f(); // No definition anywhere in program
int x = sizeof(f()); // Completely valid, even without definition of f
struct X {
X() = delete; // Cannot use this constructor
};
int xsize = sizeof(X{}); // Completely valid
Even though it is somewhat unclear, I have a hard time imagining that the C++ committee could have intended to let you use deleted member functions in unevaluated operands but not inaccessible member functions. However, I am not certain.
Note that the above code compiles without error both with GCC and Clang. However, the following code is does not:
class X {
X(){}
};
class Y {
Y() = delete;
};
bool xokay = noexcept(X{}); // Error!
bool yokay = noexcept(Y{}); // Ok
Both GCC and Clang accept Y but not X, which seems a bit weird to say the least. The following code is accepted by Clang but not GCC, and using std::declval
does not help:
class Base {
protected:
void func();
};
class Derived : public Base {
// Clang accepts this, GCC does not.
void func2() noexcept(noexcept(Base::func())) {}
};
What a mess.
Conclusions
The conclusion here is that it seems that there is plenty of inconsistency to go around, and plenty of gaps between current compilers and the C++11 specs.