I want to merge multiple vectors to a data frame. There are two variables, city
and id
that are going to be used for matching vectors to data frame.
df <- data.frame(array(NA, dim =c(10*50, 2)))
names(df)<-c("city", "id")
df[,1]<-rep(1:50, each=10)
df[,2]<-rep(1:10, 50)
I created a data frame like this. To this data frame, I want to merge 50 vectors that each corresponds to 50 cities. The problem is that each city only has 6 obs. Each city will have 4 NAs.
To give you an example, city 1 data looks like this:
seed(1234)
cbind(city=1,id=sample(1:10,6),obs=rnorm(6))
I have 50 cities data and I want to merge them to one column in df. I have tried the following code:
for(i in 1:50){
citydata<-cbind(city=i,id=sample(1:10,6),obs=rnorm(6)) # each city data
df<-merge(df,citydata, by=c("city", "id"), all=TRUE)} # merge to df
But if I run this, the loop will show warnings like this:
In merge.data.frame(df, citydata, by = c("city", "id"), ... :
column names ‘obs.x’, ‘obs.y’ are duplicated in the result
and it will create 50 columns, instead of one long column.
How can I merge cbind(city=i,id=sample(1:10,6),obs=rnorm(6))
to df
in a one nice and long column? It seems both cbind
and merge
are not ways to go.
In case there are 50 citydata
(each has 6 rows), I can rbind
them as one long data and use data.table
approach or expand.gird
+merge
approach as Philip and Jaap suggested.
I wonder if I can merge each citydata through a loop one by one, instead of rbind
them and merge it to df
.