I have to set up a phoneme table with a specific probability distribution for encoding things. Now there are 22 base elements (each with an assigned probability, sum 100%), which shall be mapped on a 12 element table, which has desired element probabilities (sum 100%).
So part of the minimisation is to merge several base elements to get 12 table elements. Each base element must occur exactly once.
In addition, the table has 3 rows. So the same 12 element composition of the 22 base elements must minimise the error for 3 target vectors. Let's say the given target vectors are b1,b2,b3 (dimension 12x1), the given base vector is x (dimension 22x1) and they are connected by the unknown matrix A (12x22) by:
b1+err1=Ax
b2+err2=Ax
b3+err3=Ax
To sum it up: A is to be found so that dot_prod(err1+err2+err3, err1+err2+err3)=min (least squares). And - according to the above explanation - A must contain only 1's and 0's, while having exactly one 1 per column.
Unfortunately I have no idea how to approach this problem. Can it be expressed in a way different from the matrix-vector form? Which tools in matlab could do it?