I need to numerically evaluate some integrals which are all of the form shown in this image:
These integrals are the matrix elements of a N x N
matrix, so I need to evaluate them for all possible combinations of n
and m
in the range of 1
to N
. The integrals are symmetric in n
and m
which I have implemented in my current nested for
loop approach:
function [V] = coulomb3(N, l, R, R0, c, x)
r1 = 0.01:x:R;
r2 = R:x:R0;
r = [r1 r2];
rl1 = r1.^(2*l);
rl2 = r2.^(2*l);
sines = zeros(N, length(r));
V = zeros(N, N);
for i = 1:N;
sines(i, :) = sin(i*pi*r/R0);
end
x1 = length(r1);
x2 = length(r);
for nn = 1:N
for mm = 1:nn
f1 = (1/6)*rl1.*r1.^2.*sines(nn, 1:x1).*sines(mm, 1:x1);
f2 = ((R^2/2)*rl2 - (R^3/3)*rl2.*r2.^(-1)).*sines(nn, x1+1:x2).*sines(mm, x1+1:x2);
value = 4*pi*c*x*trapz([f1 f2]);
V(nn, mm) = value;
V(mm, nn) = value;
end
end
I figured that calling sin(x)
in the loop was a bad idea, so I calculate all the needed values and store them. To evaluate the integrals I used trapz
, but as the first and the second/third integrals have different ranges the function values need to be calculated separately and then combined.
I've tried a couple different ways of vectorization but the only one that gives the correct results takes much longer than the above loop (used gmultiply
but the arrays created are enourmous). I've also made an analytical solution (which is possible assuming m
and n
are integers and R0 > R > 0
) but these solutions involve a cosine integral (cosint
in MATLAB) function which is extremely slow for large N
.
I'm not sure the entire thing can be vectorized without creating very large arrays, but the inner loop at least should be possible. Any ideas would be be greatly appreciated!
The inputs I use currently are:
R0 = 1000;
R = 8.4691;
c = 0.393*10^(-2);
x = 0.01;
l = 0 # Can reasonably be 0-6;
N = 20; # Increasing the value will give the same results,
# but I would like to be able to do at least N = 600;
Using these values
V(1, 1:3) = 873,379900963549 -5,80688363271849 -3,38139152472590
Although the diagonal values never converge with increasing R0 so they are less interesting.