Simple question, I just got my first specular shader working, and looking over the math, I cant help to think that the angle between each edge should cause the "specularity" to spike/become jagged. But its entirely fluid/spherical.
The idea is to calculate the angle off the vertice-normal, but there are only so many of these, and still the "specular shade" turns out perfectly even.
I cant see how the gpu knows the angle of the fragment based off of the vertice normal alone.
edit: vert shader
#version 400 core
layout ( location = 0 ) in vec3 vertex_position;
layout ( location = 2 ) in vec2 tex_cord;
layout ( location = 3 ) in vec3 vertex_normal;
uniform mat4 transform; //identity matrix
uniform mat3 lmodelmat; //inverse rotation
out vec2 UV;
out vec3 normal;
void main()
{
UV=tex_cord;
normal=normalize(vertex_normal*lmodelmat); //normalize to keep brightness
gl_Position=transform*vec4(vertex_position,1.0);
}
and frag
#version 400 core
in vec2 UV;
in vec3 normal;
uniform sampler2D mysampler;
uniform vec3 lightpos; //lights direction
out vec4 frag_colour;
in vec3 vert2cam; //specular test
void main()
{
//skip invis frags
vec4 alphatest=texture(mysampler,UV);
if(alphatest.a<0.00001)discard;
//diffuse'ing fragment
float diffuse=max(0.1,dot(normal,lightpos));
//specular'izing fragment
vec3 lpnorm=normalize(lightpos); //vector from fragment to light
vec3 reflection=normalize(reflect(-lpnorm,normal)); //reflection vector
float specularity=max(0,dot(lpnorm,reflection));
specularity=pow(specularity,50);
frag_colour=alphatest*diffuse+specularity;
}
Answer: Interpolation
This will, for the renderer, equate as an averaged curve, and not a jagged edge (flat shading)