I have a simple dataset with one Y and 10 predictors (X1-X10) coded either 0,1 or 2 for 100 observations.
n <- 100
Y <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
X1 <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=c(0.1,0.4,0.5))
X2 <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=c(0.5,0.25,0.25))
X3 <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=c(0.3,0.4,0.4))
X4 <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=c(0.35,0.35,0.3))
X5 <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=c(0.1,0.2,0.7))
X6 <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=c(0.8,0.1,0.1))
X7 <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=c(0.1,0.1,0.8))
X8 <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=c(0.35,0.35,0.3))
X9 <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=c(0.35,0.35,0.3))
X10 <- c(0,2,2,2,2,2,2,2,0,2,0,2,2,0,0,0,0,0,2,0,0,2,2,0,0,2,2,2,0,2,0,2,0,2,1,2,1,1,1,1,1,1,1,1,1,1,1,0,1,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0)
datasim <- data.frame(Y,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10)
I am trying to do bootstrap resampling as follows which works in producing 100 different set of samples for one variable.
B <- 100
n <- length(datasim$X1)
boot.samples <- matrix(sample(datasim$X1, size=B*n, replace=TRUE),B,n)
Now, I am trying to incorporate a function to calculate deviance difference using GLM. My desire is to produce dDeviance for each of the bootstrap samples (100 values). I tried the following function, but it only gives me 100 similar values of dDeviance.
xfunction <- function(x){
glmfit <- glm(Y~X1, family="binomial", data=datasim)
dDeviance <- glmfit$null.deviance-glmfit$deviance
return(dDeviance)
}
boot.statistics <- apply(boot.samples,1,xfunction)