Here's a solution that does it all in the single existing datastep without any additional sorting. First I'm going to modify your data slightly to include account as the solution really should take that into account as well:
DATA INFORM2;
INFORMAT previous_pmt_date scheduled_pmt_date MMDDYY10.;
INPUT account previous_pmt_date scheduled_pmt_date;
FORMAT previous_pmt_date scheduled_pmt_date MMDDYYS10.;
DATALINES;
1 11/16/2015 12/16/2015
1 12/17/2015 01/16/2016
1 01/17/2016 02/16/2016
2 11/16/2015 12/16/2015
2 12/17/2015 01/16/2016
2 01/17/2016 02/16/2016
;
run;
Specify a cutoff date:
%let cutoff_date = %sysfunc(mdy(1,31,2016));
This solution uses the approach from this question to save the variables in the next row of data, into the current row. You can drop the vars at the end if desired (I've commented out for the purposes of testing).
data want;
set inform2 end=eof;
by account scheduled_pmt_date;
recno = _n_ + 1;
if not eof then do;
set inform2 (keep=account previous_pmt_date scheduled_pmt_date
rename=(account = next_account
previous_pmt_date = next_previous_pmt_date
scheduled_pmt_date = next_scheduled_pmt_date)
) point=recno;
end;
else do;
call missing(next_account, next_previous_pmt_date, next_scheduled_pmt_date);
end;
select;
when ( next_account eq account and next_scheduled_pmt_date gt &cutoff_date ) flag='a';
when ( next_account ne account ) flag='b';
otherwise flag = 'z';
end;
*drop next:;
run;
This approach works by using the current observation in the dataset (obtained via _n_
) and adding 1 to it to get the next observation. We then use a second set
statement with the point=
option to load in that next observation and rename the variables at the same time so that they don't overwrite the current variables.
We then use some logic to flag the necessary records. I'm not 100% of the logic you require for your purposes, so I've provided some sample logic and used different flags to show which logic is being triggered.
Some notes...
The by
statement isn't strictly necessary but I'm including it to (a) ensure that the data is sorted correctly, and (b) help future readers understand the intent of the datastep as some of the logic requires this sort order.
The call missing
statement is simply there to clean up the log. SAS doesn't like it when you have variables that don't get assigned values, and this will happen on the very last observation so this is why we include this. Comment it out to see what happens.
The end=eof
syntax basically creates a temporary variable called eof
that has a value of 1 when we get to the last observation on that set statement. We simply use this to determine if we're at the last row or not.
Finally but very importantly, be sure to make sure you are keeping only the variables required when you load in the second dataset otherwise you will overwrite existing vars in the original data.