At first glance, it seems that with Elasticsearch as a backend it is easy and fast to build reports with pivot-like functionality as used in traditional business intelligence environments.
By "pivot-like" I mean that in SQL-terms, data is grouped by one to two dimensions, filtered, ordered by one or two dimensions and aggregated by several metrics e.g. with sum or count.
By "easy" I mean that with a sufficiently large cluster, no pre-aggregation of the data is required, which saves ETLs and data engineering time.
By "fast" I mean that due to Elasticsearch's near real time capability report latency can be reduced in many instances, when compared to traditional business intelligence systems.
Are there any reasons, not to use Elasticsearch for the above purpose?