To answer my own question, based on @Rikka above--Here is code to determine the positions for nodes in an arbitrary multipartite graph, given names for the parts.
import networkx as nx
def position_MultiPartiteGraph( Graph, Parts ):
# Graph is a networkX Graph object, where the nodes have attribute 'agentType' with part name as a value
# Parts is a list of names for the parts (to be shown as columns)
# returns list of dictionaries with keys being networkX Nodes, values being x,y coordinates for plottingxPos = {}
xPos = {}
yPos = {}
for index1, agentType in enumerate(Parts):
xPos[agentType] = index1
yPos[agentType] = 0
pos = {}
for node, attrDict in Graph.nodes(data=True):
agentType = attrDict['agentType']
# print ('node: %s\tagentType: %s' % (node, agentType))
# print ('\t(x,y): (%d,%d)' % (xPos[agentType], yPos[agentType]))
pos[node] = (xPos[agentType], yPos[agentType])
yPos[agentType] += 1
return pos
Now, suppose I define a tripartite graph like this (weights are irrelevant for this example):
TG = nx.Graph()
TG.add_nodes_from([1,2,3,4], agentType='world') # Add the node attribute "bipartite"
TG.add_nodes_from(['a','b','c'], agentType='sender')
TG.add_nodes_from(['A','B','C'], agentType='receiver')
# This is just an easier way to add (and to automatically generate) weighted edges
myEdges = [(1,'a',0.75),
(1,'b',0.25),
(2,'b',0.5),
(2,'c',0.5),
(3,'c',1.0),
(4,'a',1.0),
('a','C',0.10),
('a','A',0.80),
('c','A',1.0),
('b','C',1.0)]
[TG.add_edge(x,y,weight=z) for x,y, z in myEdges]
Then here is how to use it:
nx.draw(TG,pos=position_MultiPartiteGraph(TG, ['world', 'sender', 'receiver']))
plt.show()
I'm not sure how to show the output, but it works for me! Hurray! Thanks @Rikka!