The list-based answer
from @jkiiski takes the same approach as OP and greatly optimizes
it. Here the goal is different: I try to use another
way to represent the problem (but still brute force) and we can see that with vectors and
matrices, we can solve harder problems better, faster and stronger1.
I also applied the same heuristics as in the other answer, which significantly reduces the effort required to find solutions.
Data-structures
(defpackage :knight (:use :cl))
(in-package :knight)
(declaim (optimize (speed 3) (debug 0) (safety 0)))
(deftype board () '(simple-array bit *))
(deftype delta () '(integer -2 2))
;; when we add -2, -1, 1 or 2 to a board index, we assume the
;; result can still fit into a fixnum, which is not always true in
;; general.
(deftype frontier () (list 'integer -2 most-positive-fixnum))
Next, we define a class to hold instances of a Knight's Tour problem
as well as working data, namely height, width, a matrix representing
the board, containing either 0 (empty) or 1 (visited), as well as the
current tour, represented by a vector of size height x width with a
fill-pointer initialized to zero. The dimensions are not strictly necessary in this class since the internal board already stores them.
(defclass knights-tour ()
((visited-cells :accessor visited-cells)
(board :accessor board)
(height :accessor height :initarg :height :initform 8)
(width :accessor width :initarg :width :initform 8)))
(defmethod initialize-instance :after ((knight knights-tour)
&key &allow-other-keys)
(with-slots (height width board visited-cells) knight
(setf board (make-array (list height width)
:element-type 'bit
:initial-element 0)
visited-cells (make-array (* height width)
:element-type `(integer ,(* height width))
:fill-pointer 0))))
By the way, we also specialize print-object
:
(defmethod print-object ((knight knights-tour) stream)
(with-slots (width height visited-cells) knight
(format stream "#<knight's tour: ~dx~d, tour: ~d>" width height visited-cells)))
Auxiliary functions
(declaim (inline visit unvisit))
Visiting a cell at position x and y means setting a one at the
appropriate location in the board and pushing current cell's
coordinate into the visited-cell vector. I store the row-major index
instead of a couple of coordinates because it allocates less memory (in fact the difference is not important).
(defmethod visit ((knight knights-tour) x y)
(let ((board (board knight)))
(declare (board board))
(setf (aref board y x) 1)
(vector-push-extend (array-row-major-index board y x)
(visited-cells knight))))
Unvisiting a cell means setting a zero in the board and decreasing the
fill-pointer of the sequence of visited cells.
(defun unvisit (knight x y)
(let ((board (board knight)))
(declare (board board))
(setf (aref board y x) 0)
(decf (fill-pointer (visited-cells knight)))))
Exhaustive search
The recursive visiting function is the following one. It first visits
current cell, recursively calls itself on each free valid neighbour
and finally unvisits itself before exiting. The function accepts a
callback function to be called whenever a solution is found (edit: I won't refactor, but I think the callback function should be stored in a slot of the knights-tour class).
(declaim (ftype
(function (knights-tour fixnum fixnum function)
(values &optional))
brute-visit))
(defun brute-visit (knight x y callback
&aux (board (board knight))
(cells (visited-cells knight)))
(declare (function callback)
(board board)
(type (vector * *) cells)
(fixnum x y))
(visit knight x y)
(if (= (fill-pointer cells) (array-total-size cells))
(funcall callback knight)
(loop for (i j) of-type delta
in '((-1 -2) (1 -2) (-2 -1) (2 -1)
(-2 1) (2 1) (-1 2) (1 2))
for xx = (the frontier (+ i x))
for yy = (the frontier (+ j y))
when (and (array-in-bounds-p board yy xx)
(zerop (aref board yy xx)))
do (brute-visit knight xx yy callback)))
(unvisit knight x y)
(values))
Entry point
(defun knights-tour (x y callback &optional (h 8) (w 8))
(let ((board (make-instance 'knights-tour :height h :width w)))
(brute-visit board x y callback)))
Tests 1
The following test asks to find a solution for a 6x6 board:
(time (block nil
(knights-tour 0 0 (lambda (k) (return k)) 6 6)))
Evaluation took:
0.097 seconds of real time
0.096006 seconds of total run time (0.096006 user, 0.000000 system)
[ Run times consist of 0.008 seconds GC time, and 0.089 seconds non-GC time. ]
98.97% CPU
249,813,780 processor cycles
47,005,168 bytes consed
Comparatively, the version from the other versions runs as follows
(the origin point is the same, but we index cells differently):
(time (knights-tour-brute 1 1 6 6))
Evaluation took:
0.269 seconds of real time
0.268017 seconds of total run time (0.268017 user, 0.000000 system)
99.63% CPU
697,461,700 processor cycles
17,072,128 bytes consed
Tests 2
For larger boards, the difference is more visible. If we ask to find a solution for an 8x8 board, the above versions acts as follows on my machine:
> (time (block nil (knights-tour 0 0 (lambda (k) (return k)) 8 8)))
Evaluation took:
8.416 seconds of real time
8.412526 seconds of total run time (8.412526 user, 0.000000 system)
[ Run times consist of 0.524 seconds GC time, and 7.889 seconds non-GC time. ]
99.96% CPU
21,808,379,860 processor cycles
4,541,354,592 bytes consed
#<knight's tour: 8x8, tour: #(0 10 4 14 20 3 9 19 2 8 18 1 11 5 15 21 6 12 22 7
13 23 29 35 25 40 34 17 27 33 16 26 32 49 43 28
38 55 61 44 59 53 63 46 31 37 47 30 36 51 57 42
48 58 52 62 45 39 54 60 50 56 41 24)>
The original list-based approach did not return and after ten minutes I killed
the worker thread.
Heuristics
There are still room for improvements (see actual research papers to have more information) and here I'll sort the neighbors like @jkiiski's updated version to see what happens. What follows is just a way to abstract iterating over neighbours, because we will use it more than once, and differently:
(defmacro do-neighbourhood ((xx yy) (board x y) &body body)
(alexandria:with-unique-names (i j tx ty)
`(loop for (,i ,j) of-type delta
in '((-1 -2) (1 -2) (-2 -1) (2 -1)
(-2 1) (2 1) (-1 2) (1 2))
for ,tx = (the frontier (+ ,i ,x))
for ,ty = (the frontier (+ ,j ,y))
when (and (array-in-bounds-p ,board ,ty ,tx)
(zerop (aref ,board ,ty ,tx)))
do (let ((,xx ,tx)
(,yy ,ty))
,@body))))
We need a way to count the number of possible neighbors:
(declaim (inline count-neighbours)
(ftype (function (board fixnum fixnum ) fixnum)
count-neighbours))
(defun count-neighbours (board x y &aux (count 0))
(declare (fixnum count x y)
(board board))
(do-neighbourhood (xx yy) (board x y)
(declare (ignore xx yy))
(incf count))
count)
And here is the alternative search implementation:
(defstruct next
(count 0 :type fixnum)
(x 0 :type fixnum)
(y 0 :type fixnum))
(defun brute-visit (knight x y callback
&aux (board (board knight))
(cells (visited-cells knight)))
(declare (function callback)
(board board)
(type (vector * *) cells)
(fixnum x y))
(visit knight x y)
(if (= (fill-pointer cells) (array-total-size cells))
(funcall callback knight)
(let ((moves (make-array 8 :element-type 'next
:fill-pointer 0)))
(do-neighbourhood (xx yy) (board x y)
(vector-push-extend (make-next :count (count-neighbours board xx yy)
:x xx
:y yy)
moves))
(map nil
(lambda (next)
(brute-visit knight
(next-x next)
(next-y next)
callback)
(cerror "CONTINUE" "Backtrack detected"))
(sort moves
(lambda (u v)
(declare (fixnum u v))
(<= u v))
:key #'next-count)
)))
(unvisit knight x y)
(values))
The results are immediate when trying previous tests.
For example, with a 64x64 board:
knight> (time
(block nil
(knights-tour
0 0
(lambda (k) (return))
64 64)))
Evaluation took:
0.012 seconds of real time
0.012001 seconds of total run time (0.012001 user, 0.000000 system)
100.00% CPU
29,990,030 processor cycles
6,636,048 bytes consed
Finding the 1728 solutions for a 5x5 board takes 42 seconds.
Here I keep the backtrack mechanism, and in order to see if we need it, I added a cerror
expression in the search, so that we are notified as soon as the search tries another path. The following test triggers the error:
(time
(dotimes (x 8)
(dotimes (y 8)
(block nil
(knights-tour
x y
(lambda (k) (return))
8 8)))))
The values for x and y for which the error is reported are respectively 2 and 1.
1 For reference, see Daft Punk.