I have a enormous data set of texts, from which I have separated the text which holds particular keyword/s. Here is the data set with particular keywords. Now my next task is classify this data set according to 8 emotions and 2 sentiments, in total there will be 10 different classes. I have got this idea from NRC emotion lexicon which holds 14182 different words with their emotion+sentiment classes. The main NRC work in http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
. I know Naive Bayes classification, or clustering works well with binary classification (for say, two class positive and negative sentiment). But when 10 class problem comes, I have no idea how I will process further. I would really appreciate for your suggestion. I am doing the assignment with R. The final result will be as bellow:
|==================================|====================================|
| SentencesWithKeywords | emotion or sentiment class |
-----------------------------------|------------------------------------|
|conflict need resolved turned | anger/anticipation/disgust/fear/joy|
|conversation exchange ideas | negative/positive/sadness/ |
|richer environment | surprise/trust |
| | |
|----------------------------------|------------------------------------|
| sentence2 |anger/anticipation/disgust/fear/joy |
| | negative/positive/sadness/ |
| | surprise/trust |
|----------------------------------|------------------------------------|