I have two quantities a & b that are defined by recursion and through reference to another list of values x = [ x_1, x_2, ... x_N ], which will be an input to the program. The program will iterate over all the values in x and update a & b according to:
for n in range(1,N)
a[n] = a[n-1] * exp(+x[n]) + b[n-1] * exp(-x[n])
b[n] = b[n-1] * exp(+x[n]) + a[n-1] * exp(-x[n])
and starting values
a[0] = exp(+x[0])
b[0] = exp(-x[0])
The values in x are not big numbers (always <10) but N will be in the hundreds, and because of all the exponentials the final values of a & b will be very large. I'm worried that because of the form of the recursion where we are constantly multiplying exponentially large numbers with exponentially small ones and adding them this scheme will become quite numerically unstable.
Ideally I would calculate log(a) and log(b) instead to stop the values becoming too large. But because of the recursion scheme that's not possible, unless I compute something much messier like
log_a[n] = x[n] + log_a[n-1] + log( 1 + exp(-2*x[n] + log_b[n-1]-log_a[n-1] ) )
Is numerical stability something I am right to be concerned about here? And if so would something like the log based scheme help to stabilise it?