It is not a fully featured solution but your can start with something like this:
import org.apache.spark.ml.{UnaryTransformer}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.types.{ArrayType, DataType, StringType}
class NGramTokenizer(override val uid: String)
extends UnaryTransformer[String, Seq[String], NGramTokenizer] {
def this() = this(Identifiable.randomUID("ngramtokenizer"))
override protected def createTransformFunc: String => Seq[String] = {
getFeatures _
}
override protected def validateInputType(inputType: DataType): Unit = {
require(inputType == StringType)
}
override protected def outputDataType: DataType = {
new ArrayType(StringType, true)
}
}
Quick check:
val df = Seq((1L, "abcdef"), (2L, "foobar")).toDF("k", "v")
val transformer = new NGramTokenizer().setInputCol("v").setOutputCol("vs")
transformer.transform(df).show
// +---+------+------------------+
// | k| v| vs|
// +---+------+------------------+
// | 1|abcdef|[f, ef, def, cdef]|
// | 2|foobar|[r, ar, bar, obar]|
// +---+------+------------------+
You can even try to generalize it to something like this:
import org.apache.spark.sql.catalyst.ScalaReflection.schemaFor
import scala.reflect.runtime.universe._
class UnaryUDFTransformer[T : TypeTag, U : TypeTag](
override val uid: String,
f: T => U
) extends UnaryTransformer[T, U, UnaryUDFTransformer[T, U]] {
override protected def createTransformFunc: T => U = f
override protected def validateInputType(inputType: DataType): Unit =
require(inputType == schemaFor[T].dataType)
override protected def outputDataType: DataType = schemaFor[U].dataType
}
val transformer = new UnaryUDFTransformer("featurize", getFeatures)
.setInputCol("v")
.setOutputCol("vs")
If you want to use UDF not the wrapped function you'll have to extend Transformer
directly and override transform
method. Unfortunately majority of the useful classes is private so it can be rather tricky.
Alternatively you can register UDF:
spark.udf.register("getFeatures", getFeatures _)
and use SQLTransformer
import org.apache.spark.ml.feature.SQLTransformer
val transformer = new SQLTransformer()
.setStatement("SELECT *, getFeatures(v) AS vs FROM __THIS__")
transformer.transform(df).show
// +---+------+------------------+
// | k| v| vs|
// +---+------+------------------+
// | 1|abcdef|[f, ef, def, cdef]|
// | 2|foobar|[r, ar, bar, obar]|
// +---+------+------------------+