This is a bit more complicated: AutoPolygon gives you a bunch of triangles - the PhysicsBody::createPolygon requires a convex polygon with clockwise winding… so these are 2 different things. The vertex count might even be limited. I think Box2d’s maximum count for 1 polygon is 8.
If you want to try this you’ll have to merge the triangles to form polygons. An option would be to start with one triangle and add more as long as the whole thing stays convex. If you can’t add any more triangles start a new polygon. Add all the polygons as PhysicsShapes to your physics body to form a compound object.
I would propose that you don’t follow this path because
- Autopolygon is optimized for rendering - not for best fitting
physics - that is a difference. A polygon traced with Autopolygon will always be bigger than the original sprite - Otherwise you would see rendering artifacts.
- You have close to no control over the generated polygons
- Tracing the shape in the app will increase your startup time
- Triangle meshes and physics outlines are 2 different things
I would try some different approach: Generate the collision shapes offline. This gives you a bunch of advantages:
- You can generate and tweak the polygons in a visual editor e.g. by
using PhysicsEditor
- Loading the prepares polygons is way faster
- You can set additional parameters like mass etc
- The solution is battle proven and works out of the box
But if you want to know how polygon intersect work. You can look at this code.
// Calculate the projection of a polygon on an axis
// and returns it as a [min, max] interval
public void ProjectPolygon(Vector axis, Polygon polygon, ref float min, ref float max) {
// To project a point on an axis use the dot product
float dotProduct = axis.DotProduct(polygon.Points[0]);
min = dotProduct;
max = dotProduct;
for (int i = 0; i < polygon.Points.Count; i++) {
flaot d = polygon.Points[i].DotProduct(axis);
if (d < min) {
min = dotProduct;
} else {
if (dotProduct> max) {
max = dotProduct;
}
}
}
}
// Calculate the distance between [minA, maxA] and [minB, maxB]
// The distance will be negative if the intervals overlap
public float IntervalDistance(float minA, float maxA, float minB, float maxB) {
if (minA < minB) {
return minB - maxA;
} else {
return minA - maxB;
}
}
// Check if polygon A is going to collide with polygon B.
public boolean PolygonCollision(Polygon polygonA, Polygon polygonB) {
boolean result = true;
int edgeCountA = polygonA.Edges.Count;
int edgeCountB = polygonB.Edges.Count;
float minIntervalDistance = float.PositiveInfinity;
Vector edge;
// Loop through all the edges of both polygons
for (int edgeIndex = 0; edgeIndex < edgeCountA + edgeCountB; edgeIndex++) {
if (edgeIndex < edgeCountA) {
edge = polygonA.Edges[edgeIndex];
} else {
edge = polygonB.Edges[edgeIndex - edgeCountA];
}
// ===== Find if the polygons are currently intersecting =====
// Find the axis perpendicular to the current edge
Vector axis = new Vector(-edge.Y, edge.X);
axis.Normalize();
// Find the projection of the polygon on the current axis
float minA = 0; float minB = 0; float maxA = 0; float maxB = 0;
ProjectPolygon(axis, polygonA, ref minA, ref maxA);
ProjectPolygon(axis, polygonB, ref minB, ref maxB);
// Check if the polygon projections are currentlty intersecting
if (IntervalDistance(minA, maxA, minB, maxB) > 0)
result = false;
return result;
}
}
The function can be used this way
boolean result = PolygonCollision(polygonA, polygonB);