I am trying to generate a tuple of Vector
s by using a function that creates a custom data type (or a tuple) of values from an index. Here is an approach that achieves the desired result:
import Prelude hiding (map, unzip)
import Data.Vector hiding (map)
import Data.Array.Repa
import Data.Functor.Identity
data Foo = Foo {fooX :: Int, fooY :: Int}
unfoo :: Foo -> (Int, Int)
unfoo (Foo x y) = (x, y)
make :: Int -> (Int -> Foo) -> (Vector Int, Vector Int)
make n f = unzip $ generate n getElt where
getElt i = unfoo $ f i
Except that I would like to do it in a single iteration per Vector, almost like it is shown below, but avoiding multiple evaluation of function f
:
make' :: Int -> (Int -> Foo) -> (Vector Int, Vector Int)
make' n f = (generate n getElt1, generate n getElt2) where
getElt1 i = fooX $ f i
getElt2 i = fooY $ f i
Just as a note, I understand that Vector
library supports fusion, and the first example is already pretty efficient. I need a solution to generate
concept, other libraries have very similar constructors (Repa has fromFunction
for example), and I am using Vector
s here simply to demonstrate a problem.
Maybe some sort of memoizing of f
function call would work, but I cannot think of anything.
Edit:
Another demonstration of the problem using Repa:
makeR :: Int -> (Int -> Foo) -> (Array U DIM1 Int, Array U DIM1 Int)
makeR n f = runIdentity $ do
let arr = fromFunction (Z :. n) (\ (Z :. i) -> unfoo $ f i)
arr1 <- computeP $ map fst arr
arr2 <- computeP $ map snd arr
return (arr1, arr2)
Same as with vectors, fusion saves the day on performance, but an intermediate array arr
of tuples is still required, which I am trying to avoid.
Edit 2: (3 years later)
In the Repa example above it will not create an intermediate array, since fromFunction
creates a delayed array. Instead it will be even worse, it will evaluate f
twice for each index, one for the first array, second time for the second array. Delayed array must be computed in order to avoid such duplication of work.