Mmmm... I don't know if what follows is a proper response, but I'm going to try to give you the tools for a solution that suits your exact requirementes.
- have you looked into json/xml module configuration? You do not need to know the assemblies through cross reference, you just need to know the name of the assemblies in app.config (or web.config). E.g: you can register one module for Repositories in the Repo assembly and one module for Business services in the Business.dll. This completely removes the need of cross-referencing the various assemblies (for Module scanning, you will still need references for method calls, but that is expected anyway). See here for details: http://docs.autofac.org/en/latest/configuration/xml.html#configuring-with-microsoft-configuration
- if you want to enforce no call is done from (say) UI to Repo, you can leverage the "Instance Per Matching Lifetime Scope" function (see http://docs.autofac.org/en/latest/lifetime/instance-scope.html#instance-per-matching-lifetime-scope). You can use that registration method in order to enforce a Unit-of-work approach. E.g: a Repository can only be resolved in a "repository" LifetimeScope, and only Business components open scopes tagged "repository".
an alternative approach to tagged scopes is in using the "Instance per Owned<>" pattern. In this way, each Business service would require an Owned<Repository>.
Something like:
var builder = new ContainerBuilder();
builder.RegisterType();
builder.RegisterType().InstancePerOwned();
AFAICT, a correct approach would be to register the components through Modules, referenced by the Json/Xml config, and each Module should target specific LifetimeScopes.
When you a class calls the underlying layer, it should open a new LifetimeScope("underlying layer").
I will elaborate further, if you want advice on implementation strategies.
Best,
Alberto Chiesa
Edit:
I didn't knew the "composition root" meaning. Well, thanks for the info!
I favor a SIMPLE configuration file (be it the .config file or a separate .json or .xml file), because I feel that a list of modules to be imported is simpler done through a list than through a class. But this is opinion.
What is not an opinion is that you can import modules from assembly that are not referenced by the "Composition Root" assembly, in a simple and tested way.
So, I would go for Modules for every component registration, but for a textual configuration file for Module registration. YMMV.
Now, let me show you an example of the Unit of Work pattern that I'm using in many live projects.
In our architecture we make heavy use of a Service Layer, which holds responsibility for opening connections to the db and disposing them when finished, etc.
It's a simpler design than what you're after (I prefer shallow other than deep), but the concept is the same.
If you are "out" of the Service Layer (e.g. in an MVC Controller, or in the UI), you need a ServiceHandle in order to access the Service layer. The ServiceHandle is the only class that knows about Autofac and is responsible for service resolution, invocation and disposal.
The access to the Service Layer is done in this way:
- non service classes can require only a ServiceHandle
- invocation is done through _serviceHandle.Invoke(Func)
- Autofac injects the ready to use handles via constructor injection.
This is done through the use of BeginLifetimeScope(tag) method, and registering services (in a module) in this way:
// register every service except for ServiceBase
Builder.RegisterAssemblyTypes(_modelAssemblies)
.Where(t => typeof(IService).IsAssignableFrom(t) && (t != typeof(ServiceBase)))
.InstancePerDependency();
// register generic ServiceHandle
Builder.RegisterGeneric(typeof(ServiceHandle<>))
.AsSelf()
.AsImplementedInterfaces()
.InstancePerDependency();
And registering every shared resource as InstancePerMatchingLifetimeScope("service")
So, an example invocation would be:
... in the constructor:
public YourUiClass(ServiceHandle<MyServiceType> myserviceHandle)
{
this._myserviceHandle = myserviceHandle;
}
... in order to invoke the service:
var result = _myserviceHandle.Invoke(s => s.myServiceMethod(parameter));
This is the ServiceHandle implementation:
/// <summary>
/// Provides a managed interface to access Model Services
/// </summary>
/// <typeparam name="TServiceType">The Type of the parameter to be managed</typeparam>
public class ServiceHandle<TServiceType> : IServiceHandle<TServiceType> where TServiceType : IService
{
static private readonly ILog Log = LogManager.GetLogger(typeof(ServiceHandle<TServiceType>));
private readonly ILifetimeScope _scope;
/// <summary>
/// True if there where Exceptions caught during the last Invoke execution.
/// </summary>
public bool ErrorCaught { get; private set; }
/// <summary>
/// List of the errors caught during execution
/// </summary>
public List<String> ErrorsCaught { get; private set; }
/// <summary>
/// Contains the exception that was thrown during the
/// last Invoke execution.
/// </summary>
public Exception ExceptionCaught { get; private set; }
/// <summary>
/// Default constructor
/// </summary>
/// <param name="scope">The current Autofac scope</param>
public ServiceHandle(ILifetimeScope scope)
{
if (scope == null)
throw new ArgumentNullException("scope");
_scope = scope;
ErrorsCaught = new List<String>();
}
/// <summary>
/// Invoke a method to be performed using a
/// service instance provided by the ServiceHandle
/// </summary>
/// <param name="command">
/// Void returning action to be performed
/// </param>
/// <remarks>
/// The implementation simply wraps the Action into
/// a Func returning an Int32; the returned value
/// will be discarded.
/// </remarks>
public void Invoke(Action<TServiceType> command)
{
Invoke(s =>
{
command(s);
return 0;
});
}
/// <summary>
/// Invoke a method to be performed using a
/// service instance provided by the ServiceHandle
/// </summary>
/// <typeparam name="T">Type of the data to be returned</typeparam>
/// <param name="command">Action to be performed. Returns T.</param>
/// <returns>A generically typed T, returned by the provided function.</returns>
public T Invoke<T>(Func<TServiceType, T> command)
{
ErrorCaught = false;
ErrorsCaught = new List<string>();
ExceptionCaught = null;
T retVal;
try
{
using (var serviceScope = GetServiceScope())
using (var service = serviceScope.Resolve<TServiceType>())
{
try
{
retVal = command(service);
service.CommitSessionScope();
}
catch (RollbackException rollbackEx)
{
retVal = default(T);
if (System.Web.HttpContext.Current != null)
ErrorSignal.FromCurrentContext().Raise(rollbackEx);
Log.InfoFormat(rollbackEx.Message);
ErrorCaught = true;
ErrorsCaught.AddRange(rollbackEx.ErrorMessages);
ExceptionCaught = rollbackEx;
DoRollback(service, rollbackEx.ErrorMessages, rollbackEx);
}
catch (Exception genericEx)
{
if (service != null)
{
DoRollback(service, new List<String>() { genericEx.Message }, genericEx);
}
throw;
}
}
}
catch (Exception ex)
{
if (System.Web.HttpContext.Current != null)
ErrorSignal.FromCurrentContext().Raise(ex);
var msg = (Log.IsDebugEnabled) ?
String.Format("There was an error executing service invocation:\r\n{0}\r\nAt: {1}", ex.Message, ex.StackTrace) :
String.Format("There was an error executing service invocation:\r\n{0}", ex.Message);
ErrorCaught = true;
ErrorsCaught.Add(ex.Message);
ExceptionCaught = ex;
Log.ErrorFormat(msg);
retVal = default(T);
}
return retVal;
}
/// <summary>
/// Performs a rollback on the provided service instance
/// and records exception data for error retrieval.
/// </summary>
/// <param name="service">The Service instance whose session will be rolled back.</param>
/// <param name="errorMessages">A List of error messages.</param>
/// <param name="ex"></param>
private void DoRollback(TServiceType service, List<string> errorMessages, Exception ex)
{
var t = new Task<string>
service.RollbackSessionScope();
}
/// <summary>
/// Creates a Service Scope overriding Session resolution:
/// all the service instances share the same Session object.
/// </summary>
/// <returns></returns>
private ILifetimeScope GetServiceScope()
{
return _scope.BeginLifetimeScope("service");
}
}
Hope it helps!