As far as I know there is no straightforward algorithm to solve this specific problem more efficiently than using a backtracking approach.
You can however do this more intelligently than simply enumerating over all possible solutions. An efficient way to do this is Constraint Programming (CP) (or derived paradigms like Constraint Logic Programming (CLP)). Basically it comes down on reasoning about the constraints you have put on your problem trying to reduce the domain of the variables.
After reducing the domains, you make a choice on which you can later backtrack. After making such choice you again reduce domains and possibly have to make additional choices.
You can for instance use ECLiPSe (not the IDE, but a constraint logic programming tool) for this:
:- lib(ic).
:- import alldifferent/1 from ic_global.
:- import sumlist/2 from ic_global.
solve(Problem) :-
problem(Problem,N,LA,LB),
puzzle(N,LA,LB,Grid),
print_Grid(Grid).
puzzle(N,LA,LB,Grid) :-
N2 is N*N,
dim(Grid,[N,N]),
Grid[1..N,1..N] :: 1..N2,
(for(I,1,N), param(N,Grid,LA,LB) do
Sc is nth1(I,LA),
Lc is Grid[1..N,I],
sumlist(Lc,Sc),
Sr is nth1(I,LB),
Lr is Grid[I,1..N],
sumlist(Lr,Sr)
),
term_variables(Grid,Vars),
alldifferent(Vars),
labeling(Vars).
print_Grid(Grid) :-
dim(Grid,[N,N]),
( for(I,1,N), param(Grid,N) do
( for(J,1,N), param(Grid,I) do
X is Grid[I,J],
( var(X) -> write(" _") ; printf(" %2d", [X]) )
), nl
), nl.
nth1(1,[H|_],H) :- !.
nth1(I,[_|T],H) :-
I1 is I-1,
nth1(I1,T,H).
problem(1,3,[14,14,17],[13,8,24]).
The program is vaguely based on my implementation for multi-sudoku. Now you can solve the problem using ECLiPSe:
ECLiPSe Constraint Logic Programming System [kernel]
Kernel and basic libraries copyright Cisco Systems, Inc.
and subject to the Cisco-style Mozilla Public Licence 1.1
(see legal/cmpl.txt or http://eclipseclp.org/licence)
Source available at www.sourceforge.org/projects/eclipse-clp
GMP library copyright Free Software Foundation, see legal/lgpl.txt
For other libraries see their individual copyright notices
Version 6.1 #199 (x86_64_linux), Sun Mar 22 09:34 2015
[eclipse 1]: solve(1).
lists.eco loaded in 0.00 seconds
WARNING: module 'ic_global' does not exist, loading library...
queues.eco loaded in 0.00 seconds
ordset.eco loaded in 0.00 seconds
heap_array.eco loaded in 0.00 seconds
graph_algorithms.eco loaded in 0.03 seconds
max_flow.eco loaded in 0.00 seconds
flow_constraints_support.eco loaded in 0.00 seconds
ic_sequence.eco loaded in 0.01 seconds
ic_global.eco loaded in 0.05 seconds
2 5 6
3 1 4
9 8 7
Yes (0.05s cpu, solution 1, maybe more) ? ;
5 2 6
1 3 4
8 9 7
Yes (0.05s cpu, solution 2, maybe more) ? ;
2 6 5
3 1 4
9 7 8
Yes (0.05s cpu, solution 3, maybe more) ? ;
3 6 4
2 1 5
9 7 8
Yes (0.05s cpu, solution 4, maybe more) ? ;
6 2 5
1 3 4
7 9 8
Yes (0.05s cpu, solution 5, maybe more) ? ;
6 3 4
1 2 5
7 9 8
Yes (0.05s cpu, solution 6, maybe more) ? ;
2 6 5
4 1 3
8 7 9
Yes (0.05s cpu, solution 7, maybe more) ? ;
4 6 3
2 1 5
8 7 9
Yes (0.05s cpu, solution 8, maybe more) ?
6 2 5
1 4 3
7 8 9
Yes (0.05s cpu, solution 9, maybe more) ? ;
6 4 3
1 2 5
7 8 9
Yes (0.05s cpu, solution 10, maybe more) ? ;
No (0.06s cpu)
One simply queries solve(1)
and the constraint logic programming tool does the rest. There are thus a total of 10
solutions.
Note that the program works for an arbitrary N
, although - since worst case this program performs backtracking - evidently the program can only solve the problems for a reasonable N
.