Again a small example with unexpected results.
theory Scratch
imports Main
begin
datatype test = aa | bb | plus test test
axiomatization where
testIdemo : "x == plus x x"
lemma test1 : "y == plus y y"
Now i get the following messages:
Auto solve_direct: The current goal can be solved directly with
Scratch.testIdemo: ?x ≡ test.plus ?x ?x
Auto Quickcheck found a counterexample:
y = aa
Evaluated terms:
test.plus y y = test.plus aa aa
and when i try to run sledgehammer i get:
"remote_vampire": Try this: using testIdemo by auto (0.0 ms).
"spass": The prover derived "False" from "test.distinct(5)" and "testIdemo".
This could be due to inconsistent axioms (including "sorry"s) or to a bug in Sledgehammer.
If the problem persists, please contact the Isabelle developers.
Is this due to me messing with ==? Or do i need to set some other sort of restriction for my axioms?
Follow up:
Apparently i should not play with equals :P So i need to define my own relation.
axiomatization
testEQ :: "test ⇒ test ⇒ bool" (infixl "=" 1)
where
reflexive [intro]: "x = x" and
substitution [elim]: "x = y ⟹ B x = B y" and
symmetric : "x = y ⟹ y = x"
So i guess i have to define my basic properties. reflexiveness, substitution and symmetry seem nice for a start. I could make it generic with 'a => 'a => bool
now i would go on to define more of my relation. to stay with the example:
axiomatization
plus :: "test⇒ test⇒ test" (infixl "+" 35)
where
commutative: "x + y = y + x" and
idemo: "x + x = x"
a) Is this so far correct b) How to proceed from here So far i don't think this would replace subterms out of lemmas which is kinda the point of equivalence.