I'm trying to make a prototype audio recognition system by following this link: http://www.ifp.illinois.edu/~minhdo/teaching/speaker_recognition/. It is quite straightforward so there is almost nothing to worry about. But my problem is with the mel-frequency function. Here is the code as provided on the website:
function m = melfb(p, n, fs)
% MELFB Determine matrix for a mel-spaced filterbank
%
% Inputs: p number of filters in filterbank
% n length of fft
% fs sample rate in Hz
%
% Outputs: x a (sparse) matrix containing the filterbank amplitudes
% size(x) = [p, 1+floor(n/2)]
%
% Usage: For example, to compute the mel-scale spectrum of a
% colum-vector signal s, with length n and sample rate fs:
%
% f = fft(s);
% m = melfb(p, n, fs);
% n2 = 1 + floor(n/2);
% z = m * abs(f(1:n2)).^2;
%
% z would contain p samples of the desired mel-scale spectrum
%
% To plot filterbanks e.g.:
%
% plot(linspace(0, (12500/2), 129), melfb(20, 256, 12500)'),
% title('Mel-spaced filterbank'), xlabel('Frequency (Hz)');
f0 = 700 / fs;
fn2 = floor(n/2);
lr = log(1 + 0.5/f0) / (p+1);
% convert to fft bin numbers with 0 for DC term
bl = n * (f0 * (exp([0 1 p p+1] * lr) - 1));
b1 = floor(bl(1)) + 1;
b2 = ceil(bl(2));
b3 = floor(bl(3));
b4 = min(fn2, ceil(bl(4))) - 1;
pf = log(1 + (b1:b4)/n/f0) / lr;
fp = floor(pf);
pm = pf - fp;
r = [fp(b2:b4) 1+fp(1:b3)];
c = [b2:b4 1:b3] + 1;
v = 2 * [1-pm(b2:b4) pm(1:b3)];
m = sparse(r, c, v, p, 1+fn2);
But it gave me an error:
Error using * Inner matrix dimensions must agree.
Error in MFFC (line 17) z = m * abs(f(1:n2)).^2;
When I include these 2 lines just before line 17:
size(m)
size(abs(f(1:n2)).^2)
It gave me :
ans =
20 65
ans =
1 65
So should I transpose the second matrix? Or should I interpret this as an row-wise multiplication and modify the code?
Edit: Here is the main function (I simply run MFCC()):
function result = MFFC()
[y Fs] = audioread('s1.wav');
% sound(y,Fs)
Frames = Frame_Blocking(y,128);
Windowed = Windowing(Frames);
spectrum = FFT_After_Windowing(Windowed);
%imagesc(mag2db(abs(spectrum)))
p = 20;
S = size(spectrum);
n = S(2);
f = spectrum;
m = melfb(p, n, Fs);
n2 = 1 + floor(n/2);
size(m)
size(abs(f(1:n2)).^2)
z = m * abs(f(1:n2)).^2;
result = z;
And here are the auxiliary functions:
function f = Frame_Blocking(y,N)
% Parameters: M = 100, N = 256
% Default : M = 100; N = 256;
M = fix(N/3);
Frames = [];
first = 1; last = N;
len = length(y);
while last <= len
Frames = [Frames; y(first:last)'];
first = first + M;
last = last + M;
end;
if last < len
first = first + M;
Frames = [Frames; y(first : len)];
end
f = Frames;
function f = Windowing(Frames)
S = size(Frames);
N = S(2);
M = S(1);
Windowed = zeros(M,N);
nn = 1:N;
wn = 0.54 - 0.46*cos(2*pi/(N-1)*(nn-1));
for ii = 1:M
Windowed(ii,:) = Frames(ii,:).*wn;
end;
f = Windowed;
function f = FFT_After_Windowing(Windowed)
spectrum = fft(Windowed);
f = spectrum;