I am creating a GridSearchCV
classifier as
pipeline = Pipeline([
('vect', TfidfVectorizer(stop_words='english',sublinear_tf=True)),
('clf', LogisticRegression())
])
parameters= {}
gridSearchClassifier = GridSearchCV(pipeline, parameters, n_jobs=3, verbose=1, scoring='accuracy')
# Fit/train the gridSearchClassifier on Training Set
gridSearchClassifier.fit(Xtrain, ytrain)
This works well, and I can predict. However, now I want to retrain the classifier. For this I want to do a fit_transform()
on some feedback data.
gridSearchClassifier.fit_transform(Xnew, yNew)
But I get this error
AttributeError: 'GridSearchCV' object has no attribute 'fit_transform'
basically i am trying to fit_transform()
on the classifier's internal TfidfVectorizer
. I know that i can access the Pipeline
's internal components using the named_steps
attribute. Can i do something similar for the gridSearchClassifier
?