I am relatively new to property bindings and I am looking for some high-level advice on how to approach a design problem, which I will try to describe a simple example of here.
Problem description
The goal in this example is to allow the user to specify a box/rectangular region interactively in a pannable and zoomable 2D space. The 2D screen-space in which the box is depicted, maps to a 2D "real-space" (e.g. voltage vs time cartesian space, or GPS, or whatever). The user should be able to zoom/pan his viewport vertically/horizontally at any time, thereby changing the mapping between these two spaces.
screen-space <-------- user-adjustable mapping --------> real-space
The user specifies the rectangle in his viewport by dragging borders/corners, as in this demo:
class InteractiveHandle extends Rectangle {
private final Cursor hoverCursor;
private final Cursor activeCursor;
private final DoubleProperty centerXProperty = new SimpleDoubleProperty();
private final DoubleProperty centerYProperty = new SimpleDoubleProperty();
InteractiveHandle(DoubleProperty x, DoubleProperty y, double w, double h) {
super();
centerXProperty.bindBidirectional(x);
centerYProperty.bindBidirectional(y);
widthProperty().set(w);
heightProperty().set(h);
hoverCursor = Cursor.MOVE;
activeCursor = Cursor.MOVE;
bindRect();
enableDrag(true,true);
}
InteractiveHandle(DoubleProperty x, ObservableDoubleValue y, double w, ObservableDoubleValue h) {
super();
centerXProperty.bindBidirectional(x);
centerYProperty.bind(y);
widthProperty().set(w);
heightProperty().bind(h);
hoverCursor = Cursor.H_RESIZE;
activeCursor = Cursor.H_RESIZE;
bindRect();
enableDrag(true,false);
}
InteractiveHandle(ObservableDoubleValue x, DoubleProperty y, ObservableDoubleValue w, double h) {
super();
centerXProperty.bind(x);
centerYProperty.bindBidirectional(y);
widthProperty().bind(w);
heightProperty().set(h);
hoverCursor = Cursor.V_RESIZE;
activeCursor = Cursor.V_RESIZE;
bindRect();
enableDrag(false,true);
}
InteractiveHandle(ObservableDoubleValue x, ObservableDoubleValue y, ObservableDoubleValue w, ObservableDoubleValue h) {
super();
centerXProperty.bind(x);
centerYProperty.bind(y);
widthProperty().bind(w);
heightProperty().bind(h);
hoverCursor = Cursor.DEFAULT;
activeCursor = Cursor.DEFAULT;
bindRect();
enableDrag(false,false);
}
private void bindRect(){
xProperty().bind(centerXProperty.subtract(widthProperty().divide(2)));
yProperty().bind(centerYProperty.subtract(heightProperty().divide(2)));
}
//make a node movable by dragging it around with the mouse.
private void enableDrag(boolean xDraggable, boolean yDraggable) {
final Delta dragDelta = new Delta();
setOnMousePressed((MouseEvent mouseEvent) -> {
// record a delta distance for the drag and drop operation.
dragDelta.x = centerXProperty.get() - mouseEvent.getX();
dragDelta.y = centerYProperty.get() - mouseEvent.getY();
getScene().setCursor(activeCursor);
});
setOnMouseReleased((MouseEvent mouseEvent) -> {
getScene().setCursor(hoverCursor);
});
setOnMouseDragged((MouseEvent mouseEvent) -> {
if(xDraggable){
double newX = mouseEvent.getX() + dragDelta.x;
if (newX > 0 && newX < getScene().getWidth()) {
centerXProperty.set(newX);
}
}
if(yDraggable){
double newY = mouseEvent.getY() + dragDelta.y;
if (newY > 0 && newY < getScene().getHeight()) {
centerYProperty.set(newY);
}
}
});
setOnMouseEntered((MouseEvent mouseEvent) -> {
if (!mouseEvent.isPrimaryButtonDown()) {
getScene().setCursor(hoverCursor);
}
});
setOnMouseExited((MouseEvent mouseEvent) -> {
if (!mouseEvent.isPrimaryButtonDown()) {
getScene().setCursor(Cursor.DEFAULT);
}
});
}
//records relative x and y co-ordinates.
private class Delta { double x, y; }
}
public class InteractiveBox extends Group {
private static final double sideHandleWidth = 2;
private static final double cornerHandleSize = 4;
private static final double minHandleFraction = 0.5;
private static final double maxCornerClearance = 6;
private static final double handleInset = 2;
private final Rectangle rectangle;
private final InteractiveHandle ihLeft;
private final InteractiveHandle ihTop;
private final InteractiveHandle ihRight;
private final InteractiveHandle ihBottom;
private final InteractiveHandle ihTopLeft;
private final InteractiveHandle ihTopRight;
private final InteractiveHandle ihBottomLeft;
private final InteractiveHandle ihBottomRight;
InteractiveBox(DoubleProperty xMin, DoubleProperty yMin, DoubleProperty xMax, DoubleProperty yMax){
super();
rectangle = new Rectangle();
rectangle.widthProperty().bind(xMax.subtract(xMin));
rectangle.heightProperty().bind(yMax.subtract(yMin));
rectangle.xProperty().bind(xMin);
rectangle.yProperty().bind(yMin);
DoubleBinding xMid = xMin.add(xMax).divide(2);
DoubleBinding yMid = yMin.add(yMax).divide(2);
DoubleBinding hx = (DoubleBinding) Bindings.max(
rectangle.widthProperty().multiply(minHandleFraction)
,rectangle.widthProperty().subtract(maxCornerClearance*2)
);
DoubleBinding vx = (DoubleBinding) Bindings.max(
rectangle.heightProperty().multiply(minHandleFraction)
,rectangle.heightProperty().subtract(maxCornerClearance*2)
);
ihTopLeft = new InteractiveHandle(xMin,yMax,cornerHandleSize,cornerHandleSize);
ihTopRight = new InteractiveHandle(xMax,yMax,cornerHandleSize,cornerHandleSize);
ihBottomLeft = new InteractiveHandle(xMin,yMin,cornerHandleSize,cornerHandleSize);
ihBottomRight = new InteractiveHandle(xMax,yMin,cornerHandleSize,cornerHandleSize);
ihLeft = new InteractiveHandle(xMin,yMid,sideHandleWidth,vx);
ihTop = new InteractiveHandle(xMid,yMax,hx,sideHandleWidth);
ihRight = new InteractiveHandle(xMax,yMid,sideHandleWidth,vx);
ihBottom = new InteractiveHandle(xMid,yMin,hx,sideHandleWidth);
style(ihLeft);
style(ihTop);
style(ihRight);
style(ihBottom);
style(ihTopLeft);
style(ihTopRight);
style(ihBottomLeft);
style(ihBottomRight);
getChildren().addAll(rectangle
,ihTopLeft, ihTopRight, ihBottomLeft, ihBottomRight
,ihLeft, ihTop, ihRight, ihBottom
);
rectangle.setFill(Color.ALICEBLUE);
rectangle.setStroke(Color.LIGHTGRAY);
rectangle.setStrokeWidth(2);
rectangle.setStrokeType(StrokeType.CENTERED);
}
private void style(InteractiveHandle ih){
ih.setStroke(Color.TRANSPARENT);
ih.setStrokeWidth(handleInset);
ih.setStrokeType(StrokeType.OUTSIDE);
}
}
public class Summoner extends Application {
DoubleProperty x = new SimpleDoubleProperty(50);
DoubleProperty y = new SimpleDoubleProperty(50);
DoubleProperty xMax = new SimpleDoubleProperty(100);
DoubleProperty yMax = new SimpleDoubleProperty(100);
@Override
public void start(Stage primaryStage) {
InteractiveBox box = new InteractiveBox(x,y,xMax,yMax);
Pane root = new Pane();
root.getChildren().add(box);
Scene scene = new Scene(root, 300, 250);
primaryStage.setScene(scene);
primaryStage.show();
}
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
launch(args);
}
}
After the rectangle has been specified by the user, its coordinates (in real-space) are passed on to or read by a different part of the program.
My rationale
My first instinct was to use the built-in scale/translate properties in JavaFX nodes to implement the mapping, but we want borders and handles to have a consistent size/appearance regardless of zoom-state; zooming should only embiggen the conceptual rectangle itself, not thicken the borders or corner-handles.
(In the following, arrows represent causality/influence/dependency. For example, A ---> B
could mean property B is bound to property A (or it could mean that event-handler A sets property B), and <----->
could represent a bidirectional binding. A multi-tailed arrow such as --+-->
could represent a binding that depends on multiple input observables.)
So my question became: which of the following should I do?
real-space-properties ---+--> screen-space-properties
real-space-properties <--+--- screen-space properties
- or something different, using
<---->
On the one hand, we have mouse events and the rendered rectangle itself in screen-space. This argues for a self-contained interactive rectangle (whose screen-space position/dimension properties we can observe (as well as manipulate, if we wanted to) externally) as per the demo above.
mouse events -----> screen-space properties ------> depicted rectangle
|
|
--------> real-space properties -----> API
On the other hand, when the user adjusts pan/zoom, we want the rectangle's properties in real-space (not screen-space) to be preserved. This argues for binding the screen-space properties to real-space properties using pan&zoom-state properties:
pan/zoom properties
|
|
real-space properties ---+--> screen-space properties ------> depicted rectangle
|
|
-------> API
If I try to put together both approaches above, I run into a problem:
mouse events
|
pan/zoom properties |
| |
| v
real-space properties <--+--> screen-space properties ------> depicted rectangle
| *
|
-------> API
This diagram makes a lot of sense to me, but I don't think the kind of "bidirectional" 3-way binding at * is possible, directly. But is there perhaps a simple way to emulate/work around it? Or should I take an entirely different approach?