I am trying to write a simple program in python that will calculate and display DFT output of 1 segment.
My signal is 3 seconds long, I want to calculate DFT for every 10ms long segment. Sampling rate is 44100. So one segment is 441 samples long.
Since I am in the phase of testing this and original program is much larger(speech recognition) here is an isolated part for testing purposes that unfortunately behaves odd. Either that or my lack of knowledge on the subject.
I read somewhere that DFT input should be rounded to power of 2 so I arranged my array to 512 instead 441. Is this true?
If I am sampling at a rate of 44100, at most I can reach frequency of 22050Hz and for sample of length 512(~441) at least 100Hz ?
If 2. is true, then I can have all frequencies between 100hz and 22050hz in that 10ms segments, but the length of segment is 512(441) samples only, output of fft returns array of 256(220) values, they cannot contain all 21950 frequencies in there, can they?
My first guess is that the values in output of
fft
should be multiplied by 100, since 10ms is 100th of a second. Is this good reasoning?
The following program for two given frequencies 1000 and 2000 returns two spikes on graph at positions 24 and 48 in the output array and ~2071 and ~4156 on the graph. Since ratio of numbers is okay (2000:1000 = 48:24) I wonder if I should ignore some starting part of the fft
output?
import matplotlib.pyplot as plt
import numpy as np
t = np.arange(0, 1, 1/512.0) # We create 512 long array
# We calculate here two sinusoids together at 1000hz and 2000hz
y = np.sin(2*np.pi*1000*t) + np.sin(2*np.pi*2000*t)
n = len(y)
k = np.arange(n)
# Problematic part is around here, I am not quite sure what
# should be on the horizontal line
T = n/44100.0
frq = k/T
frq = frq[range(n/2)]
Y = fft(y)
Y = Y[range(n/2)]
# Convert from complex numbers to magnitudes
iY = []
for f in Y:
iY.append(np.sqrt(f.imag * f.imag + f.real * f.real))
plt.plot(frq, iY, 'r')
plt.xlabel('freq (HZ)')
plt.show()