I guess the approved answer is outdated. The libsvm which is used in package e1071 supports also multi-class classification in a "1-vs.-1" model. I.e., it creates (L-choose-2) number of separation planes.
Here's an example code:
# Create 2d data
set.seed(1)
x1 = matrix(c(rnorm(20, 0), rnorm(20, 0)), ncol=2)
x2 = matrix(c(rnorm(20, 0), rnorm(20, 4)), ncol=2)
x3 = matrix(c(rnorm(20, 4), rnorm(20, 0)), ncol=2)
x4 = matrix(c(rnorm(20, 4), rnorm(20, 4)), ncol=2)
x = rbind(x1,x2,x3,x4)
y = factor(c(rep(1,20), rep(2,20), rep(3,20), rep(4,20)))
# Multiclass Classification (1 vs. 1)
fit = svm(y~x, kernel = "linear", cost = 10, scale=F)
plot(x, col=y, xlim=c(-3,6), ylim=c(-2.5,6.5))
table(y, predict(fit))