I am trying to modify this code to produce a full inverted list. By that i mean, getting an index of each word in the file location. That is if we have two file containing the words
abc.txt = I am coming to the park to play, yes i am.
def.txt = Please come on over, i will be waiting for you
i should have something like this:
i /home/abc.txt: 1 10 /home/def.txt: 5
This means the letter i is the 1st and 10th word in file abc.txt and the 5th word in file def.txt
I have modified the code to provide "word location and word frequency" as shown below:
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;
import org.apache.hadoop.util.*;
public class WordCountByFile extends Configured implements Tool {
public static void main(String args[]) throws Exception {
String[] argsLocal = {
"input#2", "output#2"
};
int res = ToolRunner.run(new WordCountByFile(), argsLocal);
System.exit(res);
}
public int run(String[] args) throws Exception {
Path inputPath = new Path(args[0]);
Path outputPath = new Path(args[1]);
Configuration conf = getConf();
Job job = new Job(conf, this.getClass().toString());
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
job.setJobName("WordCountByFile");
job.setJarByClass(WordCountByFile.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
return job.waitForCompletion(true) ? 0 : 1;
}
public static class Map extends Mapper < LongWritable, Text, Text, IntWritable > {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
String filePathString = ((FileSplit) context.getInputSplit()).getPath().toString();
word.set(tokenizer.nextToken() + " " + filePathString + " : ");
context.write(word, one);
}
}
}
public static class Reduce extends Reducer < Text, IntWritable, Text, IntWritable > {
@Override
public void reduce(Text key, Iterable < IntWritable > values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value: values) {
sum += value.get();
}
context.write(key, new IntWritable(sum));
}
}
}
I know it has to go with some indexing like in Java, but i'm try to figure out how to do that in Hadoop Map Reduce. Any help guys?