I've been looking over a few tutorials for JIT and allocating heaps of executable memory at runtime. This is mainly a conceptual question, so please correct me if I got something wrong.
If I understand it correctly, a JIT takes advantage of a runtime interpreter/compiler that outputs native or executable code and, if native binary, places it in an executable code heap in memory, which is OS-specific (e.g. VirtualAlloc() for Windows, mmap() for Linux).
Additionally, some languages like Erlang can have a distributed system such that each part is separated from each other, meaning that if one fails, the others can account for such a case in a modular way, meaning that modules can also be switched in and out at will if managed correctly without disturbing overall execution.
With a runtime compiler or some sort of code delivery mechanism, wouldn't it be feasible to load code at runtime arbitrarily to replace modules of code that could be updated?
Example
Say I have a sort(T, T)
function that operates on T or T. Now, suppose I have a merge_sort(T,T)
function that I have loaded at runtime. If I implement a sort of ledger or register system such that users of the first sort(T,T)
can reassign themselves to use the new merge_sort(T,T)
function and detect when all users have adjusted themselves, I should then be able to deallocate and delete sort(T,T)
from memory.
This basically sounds a lot like a JIT, but the attractive part, to me, was the aspect where you can swap out code arbitrarily at runtime for modules. That way, while a system is not under a full load such that each module is being used, modules could be automated to switch to new code, if needed, and etc. Theoretically, wouldn't this be a way to implement patches such that a user who uses a program should never have to "restart" the program if the program can swap out code silently in the individual modules? I'd imagine much larger distributed systems can make use of this, but what about smaller ones?