This is just a guess, but the might be unclearly referring to a potential bug which could happen if you try to use a nonlocal variable or storage location for flags.
Basically, flags has to be private to the current execution context, which is why spin_lock_irqsave
is a macro which takes the name of the flags
. While flags is being saved, you don't have the spinlock yet.
How this is related to locking and unlocking in a different function:
Consider two functions that some driver developer might write:
void my_lock(my_object *ctx)
{
spin_lock_irqsave(&ctx->mylock, ctx->myflags); /* BUG */
}
void my_unlock(my_object *ctx)
{
spin_unlock_irqrestore(&ctx->mylock, ctx->myflags);
}
This is a bug because at the time ctx->myflags
is written, the lock is not yet held, and it is a shared variable visible to other contexts and processors. The local flags must be saved to a private location on the stack. Then when the lock is owned, by the caller, a copy of the flags can be saved into the exclusively owned object. In other words, it can be fixed like this:
void my_lock(my_object *ctx)
{
unsigned long flags;
spin_lock_irqsave(&ctx->mylock, flag);
ctx->myflags = flags;
}
void my_unlock(my_object *ctx)
{
unsigned long flags = ctx->myflags; /* probably unnecessary */
spin_unlock_irqrestore(&ctx->mylock, flags);
}
If it couldn't be fixed like that, it would be very difficult to implement higher level primitives which need to wrap IRQ spinlocks.
How it could be arch-dependent:
Suppose that spin_lock_irqsave
expands into machine code which saves the current flags in some register, then acquires the lock, and then saves that register into specified flags
destination. In that case, the buggy code is actually safe. If the expanded code saves the flags into the actual flags
object designated by the caller and then tries to acquire the lock, then it's broken.