I was implementing multithread Jordan-Gauss method of solving a linear system and I saw that running on two threads took only about 15% less time than running on single thread instead of ideal 50%. So I wrote a simple program reproducing this. Here I create a matrix 2000x2000 and give 2000/THREADS_NUM lines to each thread to make some calculations with them.
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <time.h>
#ifndef THREADS_NUM
#define THREADS_NUM 1
#endif
#define MATRIX_SIZE 2000
typedef struct {
double *a;
int row_length;
int rows_number;
} TWorkerParams;
void *worker_thread(void *params_v)
{
TWorkerParams *params = (TWorkerParams *)params_v;
int row_length = params->row_length;
int i, j, k;
int rows_number = params->rows_number;
double *a = params->a;
for(i = 0; i < row_length; ++i) // row_length is always the same
{
for(j = 0; j < rows_number; ++j) // rows_number is inverse proportional
// to the number of threads
{
for(k = i; k < row_length; ++k) // row_length is always the same
{
a[j*row_length + k] -= 2.;
}
}
}
return NULL;
}
int main(int argc, char *argv[])
{
// The matrix is of size NxN
double *a =
(double *)malloc(MATRIX_SIZE * MATRIX_SIZE * sizeof(double));
TWorkerParams *params =
(TWorkerParams *)malloc(THREADS_NUM * sizeof(TWorkerParams));
pthread_t *workers = (pthread_t *)malloc(THREADS_NUM * sizeof(pthread_t));
struct timespec start_time, end_time;
int rows_per_worker = MATRIX_SIZE / THREADS_NUM;
int i;
if(!a || !params || !workers)
{
fprintf(stderr, "Error allocating memory\n");
return 1;
}
for(i = 0; i < MATRIX_SIZE*MATRIX_SIZE; ++i)
a[i] = 4. * i; // just an example matrix
// Initializtion of matrix is done, now initialize threads' params
for(i = 0; i < THREADS_NUM; ++i)
{
params[i].a = a + i * rows_per_worker * MATRIX_SIZE;
params[i].row_length = MATRIX_SIZE;
params[i].rows_number = rows_per_worker;
}
// Get start time
clock_gettime(CLOCK_MONOTONIC, &start_time);
// Create threads
for(i = 0; i < THREADS_NUM; ++i)
{
if(pthread_create(workers + i, NULL, worker_thread, params + i))
{
fprintf(stderr, "Error creating thread\n");
return 1;
}
}
// Join threads
for(i = 0; i < THREADS_NUM; ++i)
{
if(pthread_join(workers[i], NULL))
{
fprintf(stderr, "Error creating thread\n");
return 1;
}
}
clock_gettime(CLOCK_MONOTONIC, &end_time);
printf("Duration: %lf msec.\n", (end_time.tv_sec - start_time.tv_sec)*1e3 +
(end_time.tv_nsec - start_time.tv_nsec)*1e-6);
return 0;
}
Here how I compile it:
gcc threads_test.c -o threads_test1 -lrt -pthread -DTHREADS_NUM=1 -Wall -Werror -Ofast
gcc threads_test.c -o threads_test2 -lrt -pthread -DTHREADS_NUM=2 -Wall -Werror -Ofast
Now when I run I get:
./threads_test1
Duration: 3695.359552 msec.
./threads_test2
Duration: 3211.236612 msec.
Which means 2-thread program runs 13% faster than single-thread, even though there is no synchronization between threads and they don't share any memory. I found this answer: https://stackoverflow.com/a/14812411/5647501 and thought that here may be some issues with processor cache, so I added padding, but still result remained the same. I changed my code as follows:
typedef struct {
double *a;
int row_length;
int rows_number;
volatile char padding[64 - 2*sizeof(int)-sizeof(double)];
} TWorkerParams;
#define VAR_SIZE (sizeof(int)*5 + sizeof(double)*2)
#define MEM_SIZE ((VAR_SIZE / 64 + 1) * 64 )
void *worker_thread(void *params_v)
{
TWorkerParams *params = (TWorkerParams *)params_v;
volatile char memory[MEM_SIZE];
int *row_length = (int *)(memory + 0);
int *i = (int *)(memory + sizeof(int)*1);
int *j = (int *)(memory + sizeof(int)*2);
int *k = (int *)(memory + sizeof(int)*3);
int *rows_number = (int *)(memory + sizeof(int)*4);
double **a = (double **)(memory + sizeof(int)*5);
*row_length = params->row_length;
*rows_number = params->rows_number;
*a = params->a;
for(*i = 0; *i < *row_length; ++*i) // row_length is always the same
{
for(*j = 0; *j < *rows_number; ++*j) // rows_number is inverse proportional
// to the number of threads
{
for(*k = 0; *k < *row_length; ++*k) // row_length is always the same
{
(*a + *j * *row_length)[*k] -= 2. * *k;
}
}
}
return NULL;
}
So my question is: why do I get only 15% speed-up instead of 50% when using two threads here? Any help or suggestion will be appreciated. I am running 64-bit Ubuntu Linux, kernel 3.19.0-39-generic, CPU Intel Core i5 4200M (two physical cores with multithreading), but I also tested it on two other machines with the same result.
EDIT:
If I replace a[j*row_length + k] -= 2.;
with a[0] -= 2.;
, I get expected speed-up:
./threads_test1
Duration: 1823.689481 msec.
./threads_test2
Duration: 949.745232 msec.
EDIT 2:
Now, when I replaced it with a[k] -= 2.;
I get the following:
./threads_test1
Duration: 1039.666979 msec.
./threads_test2
Duration: 1323.460080 msec.
This one I can't get at all.