I recently came across sklearn2pmml and jpmml-sklearn when looking for a way to convert scikit-learn models to PMML. However, I've been hitting errors when trying to use the basic usage examples that I'm unable to figure out.
When attempting to usage example in sklearn2pmml, I've been receiving the following issue around casting a long as an int:
Exception in thread "main" java.lang.ClassCastException: java.lang.Long cannot be cast to java.lang.Integer
at numpy.core.NDArrayUtil.getShape(NDArrayUtil.java:66)
at org.jpmml.sklearn.ClassDictUtil.getShape(ClassDictUtil.java:92)
at org.jpmml.sklearn.ClassDictUtil.getShape(ClassDictUtil.java:76)
at sklearn.linear_model.BaseLinearClassifier.getCoefShape(BaseLinearClassifier.java:144)
at sklearn.linear_model.BaseLinearClassifier.getNumberOfFeatures(BaseLinearClassifier.java:56)
at sklearn.Classifier.createSchema(Classifier.java:50)
at org.jpmml.sklearn.Main.run(Main.java:104)
at org.jpmml.sklearn.Main.main(Main.java:87)
Traceback (most recent call last):
File "C:\Users\user\workspace\sklearn_pmml\test.py", line 40, in <module>
sklearn2pmml(iris_classifier, iris_mapper, "LogisticRegressionIris.pmml")
File "C:\Python27\lib\site-packages\sklearn2pmml\__init__.py", line 49, in sklearn2pmml
os.remove(dump)
WindowsError: [Error 32] The process cannot access the file because it is being used by another process: 'c:\\users\\user\\appdata\\local\\temp\\tmpmxyp2y.pkl'
Any suggestions as to what is going on here?
Usage code:
#
# Step 1: feature engineering
#
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
import pandas
import sklearn_pandas
iris = load_iris()
iris_df = pandas.concat((pandas.DataFrame(iris.data[:, :], columns = ["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"]), pandas.DataFrame(iris.target, columns = ["Species"])), axis = 1)
iris_mapper = sklearn_pandas.DataFrameMapper([
(["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"], PCA(n_components = 3)),
("Species", None)
])
iris = iris_mapper.fit_transform(iris_df)
#
# Step 2: training a logistic regression model
#
from sklearn.linear_model import LogisticRegressionCV
iris_X = iris[:, 0:3]
iris_y = iris[:, 3]
iris_classifier = LogisticRegressionCV()
iris_classifier.fit(iris_X, iris_y)
#
# Step 3: conversion to PMML
#
from sklearn2pmml import sklearn2pmml
sklearn2pmml(iris_classifier, iris_mapper, "LogisticRegressionIris.pmml")
EDIT 12/6: After the new update, the same issue comes up farther down the line:
Dec 06, 2015 5:56:49 PM sklearn_pandas.DataFrameMapper updatePMML
INFO: Updating 1 target field and 3 active field(s)
Dec 06, 2015 5:56:49 PM sklearn_pandas.DataFrameMapper updatePMML
INFO: Mapping target field y to Species
Dec 06, 2015 5:56:49 PM sklearn_pandas.DataFrameMapper updatePMML
INFO: Mapping active field(s) [x1, x2, x3] to [Sepal.Length, Sepal.Width, Petal.Length, Petal.Width]
Traceback (most recent call last):
File "C:\Users\user\workspace\sklearn_pmml\test.py", line 40, in <module>
sklearn2pmml(iris_classifier, iris_mapper, "LogisticRegressionIris.pmml")
File "C:\Python27\lib\site-packages\sklearn2pmml\__init__.py", line 49, in sklearn2pmml
os.remove(dump)
WindowsError: [Error 32] The process cannot access the file because it is being used by another process: 'c:\\users\\user\\appdata\\local\\temp\\tmpqeblat.pkl'