I'd like to write an extrapolated spline function for a 2D matrix. What I have now is an extrapolated spline function for 1D arrays as below. scipy.interpolate.InterpolatedUnivariateSpline() is used.
import numpy as np
import scipy as sp
def extrapolated_spline_1D(x0,y0):
x0 = np.array(x0)
y0 = np.array(y0)
assert x0.shape == y.shape
spline = sp.interpolate.InterpolatedUnivariateSpline(x0,y0)
def f(x, spline=spline):
return np.select(
[(x<x0[0]), (x>x0[-1]), np.ones_like(x,dtype='bool')],
[np.zeros_like(x)+y0[0], np.zeros_like(x)+y0[-1], spline(x)])
return f
It takes x0, which is where the function is defined, and y0, which is the according values. When x < x0[0], y = y0[0]; and when x > x0[-1], y = y0[-1]. Here, assuming x0 is in an ascending order.
I want to have a similar extrapolated spline function for dealing with 2D matrices using np.select() as in extrapolated_spline_1D. I thought scipy.interpolate.RectBivariateSpline() might help, but I'm not sure how to do it.
For reference, my current version of the extrapolated_spline_2D is very slow. The basic idea is:
(1) first, given 1D arrays x0, y0 and 2D array z2d0 as input, making nx0 extrapolated_spline_1D functions, y0_spls, each of which stands for a layer z2d0 defined on y0;
(2) second, for a point (x,y) not on the grid, calculating nx0 values, each equals to y0_spls[i](y);
(3) third, fitting (x0, y0_spls[i](y)) with extrapolated_spline_1D to x_spl and returning x_spl(x) as the final result.
def extrapolated_spline_2D(x0,y0,z2d0):
'''
x0,y0 : array_like, 1-D arrays of coordinates in strictly monotonic order.
z2d0 : array_like, 2-D array of data with shape (x.size,y.size).
'''
nx0 = x0.shape[0]
ny0 = y0.shape[0]
assert z2d0.shape == (nx0,ny0)
# make nx0 splines, each of which stands for a layer of z2d0 on y0
y0_spls = [extrapolated_spline_1D(y0,z2d0[i,:]) for i in range(nx0)]
def f(x, y):
'''
f takes 2 arguments at the same time --> x, y have the same dimention
Return: a numpy ndarray object with the same shape of x and y
'''
x = np.array(x,dtype='f4')
y = np.array(y,dtype='f4')
assert x.shape == y.shape
ndim = x.ndim
if ndim == 0:
'''
Given a point on the xy-plane.
Make ny = 1 splines, each of which stands for a layer of new_xs on x0
'''
new_xs = np.array([y0_spls[i](y) for i in range(nx0)])
x_spl = extrapolated_spline_1D(x0,new_xs)
result = x_spl(x)
elif ndim == 1:
'''
Given a 1-D array of points on the xy-plane.
'''
ny = len(y)
new_xs = np.array([y0_spls[i](y) for i in range(nx0)]) # new_xs.shape = (nx0,ny)
x_spls = [extrapolated_spline_1D(x0,new_xs[:,i]) for i in range(ny)]
result = np.array([x_spls[i](x[i]) for i in range(ny)])
else:
'''
Given a multiple dimensional array of points on the xy-plane.
'''
x_flatten = x.flatten()
y_flatten = y.flatten()
ny = len(y_flatten)
new_xs = np.array([y0_spls[i](y_flatten) for i in range(nx0)])
x_spls = [extrapolated_spline_1D(x0,new_xs[:,i]) for i in range(ny)]
result = np.array([x_spls[i](x_flatten[i]) for i in range(ny)]).reshape(y.shape)
return result
return f