I would like to use the predict function. I have two sets of data frames (one for calibration, the second for validation). Here are the two data sets :
head(df_calib)
# A B C D COND
#1 0 11 11 9 A
#2 5 2 5 19 A
#3 4 3 10 14 A
#4 18 13 0 0 B
#5 22 9 0 0 C
#6 4 9 2 16 B
head(df_valid)
# A B C D COND
#1 14 16 1 0 A
#2 20 9 2 0 A
#3 16 6 9 0 A
#4 16 2 11 2 A
#5 4 8 14 5 C
#6 4 3 13 11 C
In my program I first define the predict and then I
library(mda)
discrim <- fda(COND~ ., data=df_calib)
pred <- predict(discrim,df_valid)
discrim
seems to work fine (if I plot discrim
) but when I calculate pred
, I get this message :
pred <- predict(discrim,df_valid)
Error in mindist[l] <- ndist[l] : NAs are not allowed in subscripted assignments
Could you help me to solve that problem ?
Here some additional information about the data :
formula(discrim)
provides that:
COND ~ A + B + C + D
attr(,"variables")
#list(COND, A, B, C, D)
attr(,"factors")
# A B C D
#COND 0 0 0 0
#A 1 0 0 0
#B 0 1 0 0
#C 0 0 1 0
#D 0 0 0 1
attr(,"term.labels")
#[1] "A" "B" "C" "D"
attr(,"order")
#[1] 1 1 1 1
attr(,"intercept")
#[1] 1
attr(,"response")
#[1] 1
attr(,"predvars")
#list(COND, A, B, C, D)
attr(,"dataClasses")
# COND A B C D
#"character" "numeric" "numeric" "numeric" "numeric"
Info about df_valid and df_calib:
str(df_valid)
#'data.frame': 26 obs. of 5 variables:
# $ A : num 0 0 0 0 8 15 17 19 18 14 ...
# $ B : num 17 15 8 7 2 2 3 5 5 4 ...
# $ C : num 2 2 2 2 14 12 6 3 2 1 ...
# $ D : num 12 14 21 22 7 2 5 4 6 12 ...
# $ COND: chr [1:26(1d)] "A" "A" "A" "A" ...
str(df_calib)
#'data.frame': 520 obs. of 5 variables:
# $ A : num 0 5 4 18 22 4 1 9 12 15 ...
# $ B : num 11 2 3 13 9 9 3 1 3 15 ...
# $ C : num 11 5 10 0 0 2 11 5 0 1 ...
# $ D : num 9 19 14 0 0 16 16 16 16 0 ...
# $ COND: chr [1:520(1d)] "A" "A" "A" "B" ...