I have a DataFrame df
like this:
t pos
frame
0 2015-11-21 14:46:32.843517000 0.000000
1 NaT 0.000000
2 NaT 0.000000
3 NaT 0.000000
4 NaT 0.000000
5 NaT 0.000000
6 NaT 0.000000
7 NaT 0.000000
8 NaT 0.000000
9 NaT 0.000000
10 NaT 0.000000
11 NaT 0.000000
12 NaT 0.000000
13 NaT 0.000000
14 NaT 0.000000
15 NaT 0.000000
16 NaT 0.000000
17 NaT 0.000000
18 NaT 0.000000
19 NaT 0.000000
... ... ...
304 2015-11-21 14:46:54.255383750 12.951807
305 2015-11-21 14:46:54.312271250 5.421687
306 2015-11-21 14:46:54.343288000 3.614458
307 2015-11-21 14:46:54.445307000 1.204819
308 2015-11-21 14:46:54.477091000 0.000000
309 NaT 0.000000
310 NaT 0.000000
311 NaT 0.000000
312 NaT 0.000000
313 NaT 0.000000
314 2015-11-21 14:46:54.927361000 1.204819
315 2015-11-21 14:46:55.003917250 4.819277
316 2015-11-21 14:46:55.058081500 12.048193
317 2015-11-21 14:46:55.112070500 24.698795
318 2015-11-21 14:46:55.167366000 34.538153
319 2015-11-21 14:46:55.252116750 29.718876
320 2015-11-21 14:46:55.325177750 16.064257
321 2015-11-21 14:46:55.396772000 6.927711
322 2015-11-21 14:46:55.448250000 3.614458
323 2015-11-21 14:46:55.559872500 0.602410
I would like to fill NaT
with pandas.tslib.Timestamp
.
I found http://pandas.pydata.org/pandas-docs/version/0.17.0/generated/pandas.DataFrame.fillna.html
but I can't find a method
for this.
But there is probably a workaround.