As a learning exercise, I wrote a little 16 bit bootloader for x86 bios systems. It seemed to work fine on QEMU. I dd'ed it to a drive for an old amd-turion computer (x86_64), and when I tried to boot that computer, it would do the BIOS screen, then I just get a blinking cursor on a black screen.
My question is, what could be different between QEMU's x86 emulator and a real x86 (64 bit) computer that definitely uses BIOS and not UEFI? Do I have to write my code differently for a real computer than than that of QEMU? Is it the way I'm copying the information to the drive? Is the computer employing some hardware-level security provision?
I have learned that it doesn't work on VirtualBox either.
It appears that loading the 2nd stage is problematic (by printing a char from the first stage successfully on real hardware).
My first stage bootloader uses code in these files:
stage_one.asm
[bits 16]
[org 0x7c00]
LOAD_ADDR: equ 0x9000 ; This is where I'm loading the 2nd stage in RAM.
start:
xor ax, ax ; nullify ax so we can set
mov ds, ax ; ds to 0
mov sp, bp ; relatively out of the way
mov bp, 0x8000 ; set up the stack
call disk_load ; load the new instructions
; at 0x9000
jmp LOAD_ADDR
%include "disk_load.asm"
times 510 - ($ - $$) db 0
dw 0xaa55 ;; end of bootsector
disk_load.asm
; load DH sectors to ES:BX from drive DL
disk_load :
mov ah, 0x02 ;read from disk
mov al, [num_sectors] ;read sector(s)
mov bx, 0
mov es, bx
mov ch, 0x00 ;track 0
mov cl, 0x02 ;start from 2nd sector
mov dh, 0x00 ;head 0
mov dl, 0x80 ;HDD 1
mov bx, LOAD_ADDR ;Where we read to in RAM.
int 0x13 ; BIOS interrupt
jc disk_error ; Jump if error ( i.e. carry flag set )
cmp al, [num_sectors] ; if num read != num expected
jne disk_error ; display error message
mov ax, READ_SUCCESS
call print_string
ret
disk_error :
mov ax, DISK_ERROR_MSG
call print_string
; Get the status of the last operation.
xor ax, ax ; nullify ax
mov ah, 0x01 ; status fxn
;mov dl, 0x80 ; 0x80 is our drive
int 0x13 ; call fxn
;mov ah, 0 ; when we print ax, we only care about the status,
; which is in al. So, we probably want to nullify
; 'ah' to prevent confusion.
call print_hex ; print resulting status msg.
jmp $
status_error:
mov ax, STATUS_ERROR
call print_string
jmp $
num_sectors: db 0x01
; Variables
DISK_ERROR_MSG: db "Disk read error: status = " , 0
STATUS_ERROR: db 'status failed.', 0
READ_SUCCESS: db 'Read success! ', 0
;AH 02h
;AL Sectors To Read Count
;CH Cylinder
;CL Sector
;DH Head
;DL Drive
;ES:BX Buffer Address Pointer
%include "print.asm"
print.asm
print_char:
pusha
mov ah, 0x0e
int 0x10
popa
ret
print_string:
pusha ; preserve the registers
; on the stack.
mov bx, ax
print_string_loop:
mov al, [bx] ;move buffer index to al
cmp al, 0 ;if [[ al == 0 ]]; then
je print_string_end ; goto print_string_end
inc bx ;else bx++
call print_char
jmp print_string_loop ; goto print_string_loop
print_string_end:
popa
ret
print_hex_char:
pusha
print_hex_loop:
;print a single hex digit
cmp al, 0x9
jg a_thru_f
zero_thru_nine:
add al, '0'
call print_char
jmp print_hex_char_end
a_thru_f:
add al, 'A'-0xA
call print_char
print_hex_char_end:
popa
ret
print_hex:
pusha
;note on little-endianness:
; If you store 1234 in AX,
; 4 is the LSB, therefore:
; AH = 12
; AL = 34
;
; Moral of the story --
; If you print, you need to
; print AH first.
mov bl, al
and bl, 0xF
mov bh, al
shr bh, 4
and bh, 0xF
mov cl, ah
and cl, 0xF
mov ch, ah
shr ch, 4
and ch, 0xF
mov al, '0'
call print_char
mov al, 'x'
call print_char
mov al, ch
call print_hex_char
mov al, cl
call print_hex_char
mov al, bh
call print_hex_char
mov al, bl
call print_hex_char
mov al, ' '
call print_char
popa
ret
I generate my kernel like this:
nasm -f bin -o stage1.bin stage_one.asm && \
nasm -f bin -o stage2.bin stage_two.asm && \
cat stage1.bin stage2.bin > raw.bin && \
#(mkdir cdiso || :) && \
#cp stage1.bin cdiso && cp stage2.bin cdiso && \
#mkisofs -o raw.iso -b stage1.bin cdiso/
qemu-system-x86_64 raw.bin || \
echo "COULD NOT FINISH ASSEMBLING." &>/dev/stderr