I am trying to predict the MNIST (http://pjreddie.com/projects/mnist-in-csv/) dataset with an SVM using the radial kernel. I want to train with few examples (e.g. 1000) and predict many more. The problem is that whenever I predict, the predictions are constant unless the indices of the test set coincide with those of the training set. That is, suppose I train with examples 1:1000 from my training examples. Then, the predictions are correct (i.e. the SVM does its best) for 1:1000 of my test set, but then I get the same output for the rest. If however I train with examples 2001:3000, then only the test examples corresponding to those rows in the test set are labeled correctly (i.e. not with the same constant). I am completely at a loss, and I think that there is some sort of bug, because the exact same code works just fine with LinearSVC, although evidently the accuracy of the method is lower.
First, I train with examples 501:1000 of training data:
# dat_train/test are pandas DFs corresponding to both MNIST datasets
dat_train = pd.read_csv('data/mnist_train.csv', header=None)
dat_test = pd.read_csv('data/mnist_train.csv', header=None)
svm = SVC(C=10.0)
idx = range(1000)
#idx = np.random.choice(range(len(dat_train)), size=1000, replace=False)
X_train = dat_train.iloc[idx,1:].reset_index(drop=True).as_matrix()
y_train = dat_train.iloc[idx,0].reset_index(drop=True).as_matrix()
X_test = dat_test.reset_index(drop=True).as_matrix()[:,1:]
y_test = dat_test.reset_index(drop=True).as_matrix()[:,0]
svm.fit(X=X_train[501:1000,:], y=y_train[501:1000])
Here you can see that about half the predictions are wrong
y_pred = svm.predict(X_test[:1000,:])
confusion_matrix(y_test[:1000], y_pred)
All wrong (i.e. constant)
y_pred = svm.predict(X_test[:500,:])
confusion_matrix(y_test[:500], y_pred)
This is what I would expect to see for all test data
y_pred = svm.predict(X_test[501:1000,:])
confusion_matrix(y_test[501:1000], y_pred)
You can check that all of the above are correct using LinearSVC!