A have a dataframe like this which represents a histogram, with each bin size being .003. I want to find the median value in the histogram, but I am unsure how. The median should be where half of the area of the histogram lies to the left, and half of the area to the right.
Count Value
0 0.262584
0 0.265584
0 0.268584
1 0.271584
1 0.274584
2 0.277584
2 0.280584
1 0.283584
0 0.286584
3 0.289584
3 0.292584
10 0.295584
7 0.298584
22 0.301584
2 0.304584
17 0.307584
19 0.310584
19 0.313584
32 0.316584
17 0.319584
17 0.322584
25 0.325584
32 0.328584
18 0.331584
24 0.334584
43 0.337584
38 0.340584
30 0.343584
21 0.346584
53 0.349584
45 0.352584
36 0.355584
46 0.358584
58 0.361584
34 0.364584
71 0.367584
50 0.370584
73 0.373584
60 0.376584
97 0.379584
67 0.382584
84 0.385584
70 0.388584
106 0.391584
91 0.394584
148 0.397584
70 0.400584
166 0.403584
88 0.406584
155 0.409584
126 0.412584
128 0.415584
181 0.418584
81 0.421584
216 0.424584
95 0.427584
193 0.430584
67 0.433584
164 0.436584
68 0.439584
133 0.442584
60 0.445584
92 0.448584
38 0.451584
63 0.454584
40 0.457584
43 0.460584
24 0.463584
32 0.466584
19 0.469584
11 0.472584
11 0.475584
13 0.478584
4 0.481584
6 0.484584
3 0.487584
5 0.490584
3 0.493584
4 0.496584
5 0.499584
1 0.502584
3 0.505584
1 0.508584
1 0.511584
1 0.514584
0 0.517584
1 0.520584
3 0.523584
0 0.526584
0 0.529584
0 0.532584
0 0.535584
0 0.538584
1 0.541584
1 0.544584
3 0.547584
0 0.550584
0 0.553584
0 0.556584
1 0.559584
0 0.562584
0 0.565584
0 0.568584
1 0.571584
0 0.574584
0 0.577584
0 0.580584
1 0.583584
0 0.586584
1 0.589584
My histogram looks like this:
and the code I am using to find the median is this:
import pandas as pd
import numpy as np
df=pd.read_csv(r'C:\file')
list1=df['Value'].tolist()
median = np.median(list1)
print median
which returns 0.42758.
I am not sure if this is the correct method even though this value looks reasonable, so I wanted to see what peoples thoughts were here.
EDIT:
This is clearly not the correct method. Here is another example where it doesn't work:
1 0.283396
0 0.286396
0 0.289396
0 0.292396
0 0.295396
3 0.298396
0 0.301396
0 0.304396
0 0.307396
0 0.310396
0 0.313396
1 0.316396
0 0.319396
0 0.322396
0 0.325396
1 0.328396
1 0.331396
2 0.334396
0 0.337396
0 0.340396
1 0.343396
5 0.346396
0 0.349396
1 0.352396
0 0.355396
0 0.358396
0 0.361396
1 0.364396
0 0.367396
1 0.370396
1 0.373396
2 0.376396
0 0.379396
1 0.382396
0 0.385396
0 0.388396
1 0.391396
0 0.394396
1 0.397396
1 0.400396
3 0.403396
4 0.406396
0 0.409396
3 0.412396
0 0.415396
3 0.418396
2 0.421396
5 0.424396
1 0.427396
3 0.430396
8 0.433396
1 0.436396
2 0.439396
1 0.442396
4 0.445396
4 0.448396
5 0.451396
1 0.454396
7 0.457396
8 0.460396
4 0.463396
5 0.466396
9 0.469396
4 0.472396
5 0.475396
6 0.478396
11 0.481396
4 0.484396
4 0.487396
6 0.490396
6 0.493396
10 0.496396
14 0.499396
7 0.502396
10 0.505396
7 0.508396
9 0.511396
8 0.514396
3 0.517396
12 0.520396
9 0.523396
9 0.526396
11 0.529396
8 0.532396
9 0.535396
15 0.538396
9 0.541396
7 0.544396
10 0.547396
6 0.550396
12 0.553396
9 0.556396
7 0.559396
6 0.562396
5 0.565396
11 0.568396
7 0.571396
12 0.574396
8 0.577396
8 0.580396
6 0.583396
9 0.586396
9 0.589396
18 0.592396
10 0.595396
14 0.598396
16 0.601396
14 0.604396
16 0.607396
12 0.610396
19 0.613396
18 0.616396
25 0.619396
22 0.622396
20 0.625396
16 0.628396
22 0.631396
18 0.634396
26 0.637396
26 0.640396
18 0.643396
26 0.646396
39 0.649396
31 0.652396
31 0.655396
37 0.658396
35 0.661396
46 0.664396
49 0.667396
47 0.670396
43 0.673396
46 0.676396
53 0.679396
52 0.682396
47 0.685396
49 0.688396
67 0.691396
58 0.694396
61 0.697396
52 0.700396
74 0.703396
79 0.706396
81 0.709396
62 0.712396
73 0.715396
97 0.718396
73 0.721396
107 0.724396
98 0.727396
89 0.730396
96 0.733396
85 0.736396
97 0.739396
102 0.742396
103 0.745396
126 0.748396
113 0.751396
112 0.754396
134 0.757396
126 0.760396
107 0.763396
120 0.766396
120 0.769396
135 0.772396
153 0.775396
143 0.778396
132 0.781396
145 0.784396
119 0.787396
124 0.790396
155 0.793396
99 0.796396
117 0.799396
127 0.802396
126 0.805396
102 0.808396
118 0.811396
76 0.814396
92 0.817396
75 0.820396
72 0.823396
59 0.826396
42 0.829396
49 0.832396
33 0.835396
38 0.838396
24 0.841396
12 0.844396
5 0.847396
15 0.850396
4 0.853396
6 0.856396
4 0.859396
2 0.862396
2 0.865396
1 0.868396
0 0.871396
2 0.874396
1 0.877396
the histogram looks like this:
and the median value is this:
.581896 which is clearly not the value where half the area lies to the right and half to the left. It is probably somewhere around .7 in this example.