I have the following dataframe:
import numpy as np
import pandas as pd
df = pd.DataFrame(data={'Cat' : ['A', 'A', 'A','B', 'B', 'A', 'B'],
'Vals' : [1, 2, 3, 4, 5, np.nan, np.nan]})
Cat Vals
0 A 1
1 A 2
2 A 3
3 B 4
4 B 5
5 A NaN
6 B NaN
And I want indexes 5
and 6
to be filled with the conditional mean of 'Vals' based on the 'Cat' column, namely 2
and 4.5
The following code works fine:
means = df.groupby('Cat').Vals.mean()
for i in df[df.Vals.isnull()].index:
df.loc[i, 'Vals'] = means[df.loc[i].Cat]
Cat Vals
0 A 1
1 A 2
2 A 3
3 B 4
4 B 5
5 A 2
6 B 4.5
But I'm looking for something nicer, like
df.Vals.fillna(df.Vals.mean(Conditionally to column 'Cat'))
Edit: I found this, which is one line shorter, but I'm still not happy with it:
means = df.groupby('Cat').Vals.mean()
df.Vals = df.apply(lambda x: means[x.Cat] if pd.isnull(x.Vals) else x.Vals, axis=1)